1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
from caffe2.python import core
from functools import partial
from hypothesis import given, settings
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import numpy as np
import unittest
from caffe2.python import workspace
def _gen_test_add_padding(with_pad_data=True,
is_remove=False):
def gen_with_size(args):
lengths, inner_shape = args
data_dim = [sum(lengths)] + inner_shape
lengths = np.array(lengths, dtype=np.int32)
if with_pad_data:
return st.tuples(
st.just(lengths),
hu.arrays(data_dim),
hu.arrays(inner_shape),
hu.arrays(inner_shape))
else:
return st.tuples(st.just(lengths), hu.arrays(data_dim))
min_len = 4 if is_remove else 0
lengths = st.lists(
st.integers(min_value=min_len, max_value=10),
min_size=0,
max_size=5)
inner_shape = st.lists(
st.integers(min_value=1, max_value=3),
min_size=0,
max_size=2)
return st.tuples(lengths, inner_shape).flatmap(gen_with_size)
def _add_padding_ref(
start_pad_width, end_pad_width, ret_lengths,
data, lengths, start_padding=None, end_padding=None):
if start_padding is None:
start_padding = np.zeros(data.shape[1:], dtype=data.dtype)
end_padding = (
end_padding if end_padding is not None else start_padding)
out_size = data.shape[0] + (
start_pad_width + end_pad_width) * len(lengths)
out = np.ndarray((out_size,) + data.shape[1:])
in_ptr = 0
out_ptr = 0
for length in lengths:
out[out_ptr:(out_ptr + start_pad_width)] = start_padding
out_ptr += start_pad_width
out[out_ptr:(out_ptr + length)] = data[in_ptr:(in_ptr + length)]
in_ptr += length
out_ptr += length
out[out_ptr:(out_ptr + end_pad_width)] = end_padding
out_ptr += end_pad_width
lengths_out = lengths + (start_pad_width + end_pad_width)
if ret_lengths:
return (out, lengths_out)
else:
return (out, )
def _remove_padding_ref(start_pad_width, end_pad_width, data, lengths):
pad_width = start_pad_width + end_pad_width
out_size = data.shape[0] - (
start_pad_width + end_pad_width) * len(lengths)
out = np.ndarray((out_size,) + data.shape[1:])
in_ptr = 0
out_ptr = 0
for length in lengths:
out_length = length - pad_width
out[out_ptr:(out_ptr + out_length)] = data[
(in_ptr + start_pad_width):(in_ptr + length - end_pad_width)]
in_ptr += length
out_ptr += out_length
lengths_out = lengths - (start_pad_width + end_pad_width)
return (out, lengths_out)
def _gather_padding_ref(start_pad_width, end_pad_width, data, lengths):
start_padding = np.zeros(data.shape[1:], dtype=data.dtype)
end_padding = np.zeros(data.shape[1:], dtype=data.dtype)
pad_width = start_pad_width + end_pad_width
ptr = 0
for length in lengths:
for _ in range(start_pad_width):
start_padding += data[ptr]
ptr += 1
ptr += length - pad_width
for _ in range(end_pad_width):
end_padding += data[ptr]
ptr += 1
return (start_padding, end_padding)
class TestSequenceOps(serial.SerializedTestCase):
@given(start_pad_width=st.integers(min_value=1, max_value=2),
end_pad_width=st.integers(min_value=0, max_value=2),
args=_gen_test_add_padding(with_pad_data=True),
ret_lengths=st.booleans(),
**hu.gcs)
@settings(deadline=10000)
def test_add_padding(
self, start_pad_width, end_pad_width, args, ret_lengths, gc, dc
):
lengths, data, start_padding, end_padding = args
start_padding = np.array(start_padding, dtype=np.float32)
end_padding = np.array(end_padding, dtype=np.float32)
outputs = ['output', 'lengths_out'] if ret_lengths else ['output']
op = core.CreateOperator(
'AddPadding', ['data', 'lengths', 'start_padding', 'end_padding'],
outputs,
padding_width=start_pad_width,
end_padding_width=end_pad_width
)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[data, lengths, start_padding, end_padding],
reference=partial(
_add_padding_ref, start_pad_width, end_pad_width, ret_lengths
)
)
def _local_test_add_padding_shape_and_type(
self,
data,
start_pad_width,
end_pad_width,
ret_lengths,
lengths=None,
):
if ret_lengths and lengths is None:
return
workspace.ResetWorkspace()
workspace.FeedBlob("data", data)
if lengths is not None:
workspace.FeedBlob("lengths", np.array(lengths).astype(np.int32))
op = core.CreateOperator(
'AddPadding',
['data'] if lengths is None else ['data', 'lengths'],
['output', 'lengths_out'] if ret_lengths else ['output'],
padding_width=start_pad_width,
end_padding_width=end_pad_width
)
add_padding_net = core.Net("add_padding_net")
add_padding_net.Proto().op.extend([op])
assert workspace.RunNetOnce(
add_padding_net
), "Failed to run the add_padding_net"
shapes, types = workspace.InferShapesAndTypes(
[add_padding_net],
)
expected_shape = list(data.shape)
expected_shape[0] += (1 if lengths is None else len(lengths)) * (start_pad_width + end_pad_width)
self.assertEqual(shapes["output"], expected_shape)
self.assertEqual(types["output"], core.DataType.FLOAT)
if ret_lengths:
if lengths is None:
self.assertEqual(shapes["lengths_out"], [1])
else:
self.assertEqual(shapes["lengths_out"], [len(lengths)])
self.assertEqual(types["lengths_out"], core.DataType.INT32)
def test_add_padding_shape_and_type_3(
self
):
for start_pad_width in range(3):
for end_pad_width in range(3):
for ret_lengths in [True, False]:
self._local_test_add_padding_shape_and_type(
data=np.random.rand(1, 2).astype(np.float32),
lengths=None,
start_pad_width=start_pad_width,
end_pad_width=end_pad_width,
ret_lengths=ret_lengths,
)
def test_add_padding_shape_and_type_4(
self
):
for start_pad_width in range(3):
for end_pad_width in range(3):
for ret_lengths in [True, False]:
self._local_test_add_padding_shape_and_type(
data=np.random.rand(3, 1, 2).astype(np.float32),
lengths=[1, 1, 1],
start_pad_width=start_pad_width,
end_pad_width=end_pad_width,
ret_lengths=ret_lengths,
)
def test_add_padding_shape_and_type_5(
self
):
for start_pad_width in range(3):
for end_pad_width in range(3):
for ret_lengths in [True, False]:
self._local_test_add_padding_shape_and_type(
data=np.random.rand(3, 2, 1).astype(np.float32),
lengths=None,
start_pad_width=start_pad_width,
end_pad_width=end_pad_width,
ret_lengths=ret_lengths,
)
@given(start_pad_width=st.integers(min_value=0, max_value=3),
end_pad_width=st.integers(min_value=0, max_value=3),
num_dims=st.integers(min_value=1, max_value=4),
num_groups=st.integers(min_value=0, max_value=4),
ret_lengths=st.booleans(),
**hu.gcs)
@settings(deadline=1000)
def test_add_padding_shape_and_type(
self, start_pad_width, end_pad_width, num_dims, num_groups, ret_lengths, gc, dc
):
np.random.seed(666)
lengths = []
for _ in range(num_groups):
lengths.append(np.random.randint(0, 3))
if sum(lengths) == 0:
lengths = []
data_shape = []
for _ in range(num_dims):
data_shape.append(np.random.randint(1, 4))
if sum(lengths) > 0:
data_shape[0] = sum(lengths)
data = np.random.randn(*data_shape).astype(np.float32)
self._local_test_add_padding_shape_and_type(
data=data,
lengths=lengths if len(lengths) else None,
start_pad_width=start_pad_width,
end_pad_width=end_pad_width,
ret_lengths=ret_lengths,
)
@given(start_pad_width=st.integers(min_value=1, max_value=2),
end_pad_width=st.integers(min_value=0, max_value=2),
args=_gen_test_add_padding(with_pad_data=False),
**hu.gcs)
def test_add_zero_padding(self, start_pad_width, end_pad_width, args, gc, dc):
lengths, data = args
op = core.CreateOperator(
'AddPadding',
['data', 'lengths'],
['output', 'lengths_out'],
padding_width=start_pad_width,
end_padding_width=end_pad_width)
self.assertReferenceChecks(
gc,
op,
[data, lengths],
partial(_add_padding_ref, start_pad_width, end_pad_width, True))
@given(start_pad_width=st.integers(min_value=1, max_value=2),
end_pad_width=st.integers(min_value=0, max_value=2),
data=hu.tensor(min_dim=1, max_dim=3),
**hu.gcs)
def test_add_padding_no_length(self, start_pad_width, end_pad_width, data, gc, dc):
op = core.CreateOperator(
'AddPadding',
['data'],
['output', 'output_lens'],
padding_width=start_pad_width,
end_padding_width=end_pad_width)
self.assertReferenceChecks(
gc,
op,
[data],
partial(
_add_padding_ref, start_pad_width, end_pad_width, True,
lengths=np.array([data.shape[0]])))
# Uncomment the following seed to make this fail.
# @seed(302934307671667531413257853548643485645)
# See https://github.com/caffe2/caffe2/issues/1547
@unittest.skip("flaky test")
@given(start_pad_width=st.integers(min_value=1, max_value=2),
end_pad_width=st.integers(min_value=0, max_value=2),
args=_gen_test_add_padding(with_pad_data=False, is_remove=True),
**hu.gcs)
def test_remove_padding(self, start_pad_width, end_pad_width, args, gc, dc):
lengths, data = args
op = core.CreateOperator(
'RemovePadding',
['data', 'lengths'],
['output', 'lengths_out'],
padding_width=start_pad_width,
end_padding_width=end_pad_width)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[data, lengths],
reference=partial(_remove_padding_ref, start_pad_width, end_pad_width))
@given(start_pad_width=st.integers(min_value=0, max_value=2),
end_pad_width=st.integers(min_value=0, max_value=2),
args=_gen_test_add_padding(with_pad_data=True),
**hu.gcs)
@settings(deadline=10000)
def test_gather_padding(self, start_pad_width, end_pad_width, args, gc, dc):
lengths, data, start_padding, end_padding = args
padded_data, padded_lengths = _add_padding_ref(
start_pad_width, end_pad_width, True, data,
lengths, start_padding, end_padding)
op = core.CreateOperator(
'GatherPadding',
['data', 'lengths'],
['start_padding', 'end_padding'],
padding_width=start_pad_width,
end_padding_width=end_pad_width)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[padded_data, padded_lengths],
reference=partial(_gather_padding_ref, start_pad_width, end_pad_width))
@given(data=hu.tensor(min_dim=3, max_dim=3, dtype=np.float32,
elements=hu.floats(min_value=-np.inf,
max_value=np.inf),
min_value=1, max_value=10),
**hu.gcs)
@settings(deadline=10000)
def test_reverse_packed_segs(self, data, gc, dc):
max_length = data.shape[0]
batch_size = data.shape[1]
lengths = np.random.randint(max_length + 1, size=batch_size)
op = core.CreateOperator(
"ReversePackedSegs",
["data", "lengths"],
["reversed_data"])
def op_ref(data, lengths):
rev_data = np.array(data, copy=True)
for i in range(batch_size):
seg_length = lengths[i]
for j in range(seg_length):
rev_data[j][i] = data[seg_length - 1 - j][i]
return (rev_data,)
def op_grad_ref(grad_out, outputs, inputs):
return op_ref(grad_out, inputs[1]) + (None,)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[data, lengths],
reference=op_ref,
output_to_grad='reversed_data',
grad_reference=op_grad_ref)
@given(data=hu.tensor(min_dim=1, max_dim=3, dtype=np.float32,
elements=hu.floats(min_value=-np.inf,
max_value=np.inf),
min_value=10, max_value=10),
indices=st.lists(st.integers(min_value=0, max_value=9),
min_size=0,
max_size=10),
**hu.gcs_cpu_only)
@settings(deadline=10000)
def test_remove_data_blocks(self, data, indices, gc, dc):
indices = np.array(indices)
op = core.CreateOperator(
"RemoveDataBlocks",
["data", "indices"],
["shrunk_data"])
def op_ref(data, indices):
unique_indices = np.unique(indices) if len(indices)>0 else np.array([],dtype=np.int64)
sorted_indices = np.sort(unique_indices)
shrunk_data = np.delete(data, sorted_indices, axis=0)
return (shrunk_data,)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[data, indices],
reference=op_ref)
@given(elements=st.lists(st.integers(min_value=0, max_value=9),
min_size=0,
max_size=10),
**hu.gcs_cpu_only)
@settings(deadline=10000)
def test_find_duplicate_elements(self, elements, gc, dc):
mapping = {
0: "a",
1: "b",
2: "c",
3: "d",
4: "e",
5: "f",
6: "g",
7: "h",
8: "i",
9: "j"}
data = np.array([mapping[e] for e in elements], dtype='|S')
op = core.CreateOperator(
"FindDuplicateElements",
["data"],
["indices"])
def op_ref(data):
unique_data = []
indices = []
for i, e in enumerate(data):
if e in unique_data:
indices.append(i)
else:
unique_data.append(e)
return (np.array(indices, dtype=np.int64),)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[data],
reference=op_ref)
if __name__ == "__main__":
import unittest
unittest.main()
|