File: sparse_lengths_sum_benchmark.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (134 lines) | stat: -rw-r--r-- 4,159 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134


import argparse
import datetime

import numpy as np
from caffe2.python import core, workspace


DTYPES = {
    "uint8": np.uint8,
    "uint8_fused": np.uint8,
    "float": np.float32,
    "float16": np.float16,
}


def benchmark_sparse_lengths_sum(
    dtype_str,
    categorical_limit,
    embedding_size,
    average_len,
    batch_size,
    iterations,
    flush_cache,
):
    print("Preparing lookup table. " + str(datetime.datetime.now()))

    # We will use a constant, but non-trivial value so we save initialization
    # time.
    data = np.ones([categorical_limit, embedding_size], dtype=np.float32)
    data *= 17.01

    if dtype_str == "uint8":
        scale_bias = np.random.rand(categorical_limit, 2).astype(np.float32)
        workspace.FeedBlob("scale_bias", scale_bias.astype(np.float32))
    elif dtype_str == "uint8_fused":
        scale_bias = np.random.randint(255, size=(categorical_limit, 8))
        data = np.concatenate([data, scale_bias], axis=1)

    print("Data has shape {} {}".format(data.shape, datetime.datetime.now()))
    workspace.FeedBlob("X", data.astype(DTYPES[dtype_str]))

    # In order to produce truly random lengths and indices, we will embed a
    # Python operator in the net to generate them.
    def f(_, outputs):
        lengths = np.random.randint(
            int(np.round(average_len * 0.75)),
            int(np.round(average_len * 1.25)) + 1,
            batch_size,
        ).astype(np.int32)
        indices = np.random.randint(0, categorical_limit, np.sum(lengths)).astype(
            np.int64
        )
        outputs[0].feed(indices)
        outputs[1].feed(lengths)

    init_net = core.Net("init_net")
    init_net.Python(f)([], ["indices", "lengths"])
    workspace.RunNetOnce(init_net)

    net = core.Net("mynet")
    if flush_cache:
        l3_cache_size = 30 * 2 ** 20 // 4
        workspace.FeedBlob(
            "huge_blob", np.random.randn(l3_cache_size).astype(np.float32)
        )
        net.Scale("huge_blob", "huge_blob_2x", value=2.0)
    if dtype_str == "uint8":
        net.SparseLengthsSum8BitsRowwise(["X", "indices", "lengths", "scale_bias"], "Y")
    elif dtype_str == "uint8_fused":
        net.SparseLengthsSumFused8BitRowwise(["X", "indices", "lengths"], "Y")
    else:
        net.SparseLengthsSum(["X", "indices", "lengths"], "Y")
    workspace.CreateNet(net)

    # Set random seed, so that repeated runs will keep the same sequence of
    # random indices.
    np.random.seed(1701)

    print("Preparation finished. " + str(datetime.datetime.now()))

    runtimes = workspace.BenchmarkNet(net.Name(), 1, iterations, True)
    print(
        "{} billion sums per cycle".format(
            embedding_size
            * workspace.FetchBlob("indices").size
            / runtimes[2 if flush_cache else 1]
            / 1e6
        )
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="minimal benchmark for sparse lengths sum."
    )
    parser.add_argument(
        "-d",
        "--dtype",
        choices=list(DTYPES.keys()),
        default="float",
        help="The data type for the input lookup table.",
    )
    parser.add_argument(
        "-e", "--embedding-size", type=int, default=6000000, help="Lookup table size."
    )
    parser.add_argument(
        "--embedding-dim", type=int, default=128, help="Embedding dimension."
    )
    parser.add_argument(
        "--average-len",
        type=int,
        default=27,
        help="Sparse feature average lengths, default is 27",
    )
    parser.add_argument("--batch-size", type=int, default=100, help="The batch size.")
    parser.add_argument(
        "-i", "--iteration", type=int, default=100000, help="The number of iterations."
    )
    parser.add_argument(
        "--flush-cache", action="store_true", help="If true, flush cache"
    )
    args, extra_args = parser.parse_known_args()
    core.GlobalInit(["python"] + extra_args)
    benchmark_sparse_lengths_sum(
        args.dtype,
        args.embedding_size,
        args.embedding_dim,
        args.average_len,
        args.batch_size,
        args.iteration,
        args.flush_cache,
    )