1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
import argparse
import datetime
import numpy as np
from caffe2.python import core, workspace
DTYPES = {
"uint8": np.uint8,
"uint8_fused": np.uint8,
"float": np.float32,
"float16": np.float16,
}
def benchmark_sparse_lengths_sum(
dtype_str,
categorical_limit,
embedding_size,
average_len,
batch_size,
iterations,
flush_cache,
):
print("Preparing lookup table. " + str(datetime.datetime.now()))
# We will use a constant, but non-trivial value so we save initialization
# time.
data = np.ones([categorical_limit, embedding_size], dtype=np.float32)
data *= 17.01
if dtype_str == "uint8":
scale_bias = np.random.rand(categorical_limit, 2).astype(np.float32)
workspace.FeedBlob("scale_bias", scale_bias.astype(np.float32))
elif dtype_str == "uint8_fused":
scale_bias = np.random.randint(255, size=(categorical_limit, 8))
data = np.concatenate([data, scale_bias], axis=1)
print("Data has shape {} {}".format(data.shape, datetime.datetime.now()))
workspace.FeedBlob("X", data.astype(DTYPES[dtype_str]))
# In order to produce truly random lengths and indices, we will embed a
# Python operator in the net to generate them.
def f(_, outputs):
lengths = np.random.randint(
int(np.round(average_len * 0.75)),
int(np.round(average_len * 1.25)) + 1,
batch_size,
).astype(np.int32)
indices = np.random.randint(0, categorical_limit, np.sum(lengths)).astype(
np.int64
)
outputs[0].feed(indices)
outputs[1].feed(lengths)
init_net = core.Net("init_net")
init_net.Python(f)([], ["indices", "lengths"])
workspace.RunNetOnce(init_net)
net = core.Net("mynet")
if flush_cache:
l3_cache_size = 30 * 2 ** 20 // 4
workspace.FeedBlob(
"huge_blob", np.random.randn(l3_cache_size).astype(np.float32)
)
net.Scale("huge_blob", "huge_blob_2x", value=2.0)
if dtype_str == "uint8":
net.SparseLengthsSum8BitsRowwise(["X", "indices", "lengths", "scale_bias"], "Y")
elif dtype_str == "uint8_fused":
net.SparseLengthsSumFused8BitRowwise(["X", "indices", "lengths"], "Y")
else:
net.SparseLengthsSum(["X", "indices", "lengths"], "Y")
workspace.CreateNet(net)
# Set random seed, so that repeated runs will keep the same sequence of
# random indices.
np.random.seed(1701)
print("Preparation finished. " + str(datetime.datetime.now()))
runtimes = workspace.BenchmarkNet(net.Name(), 1, iterations, True)
print(
"{} billion sums per cycle".format(
embedding_size
* workspace.FetchBlob("indices").size
/ runtimes[2 if flush_cache else 1]
/ 1e6
)
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="minimal benchmark for sparse lengths sum."
)
parser.add_argument(
"-d",
"--dtype",
choices=list(DTYPES.keys()),
default="float",
help="The data type for the input lookup table.",
)
parser.add_argument(
"-e", "--embedding-size", type=int, default=6000000, help="Lookup table size."
)
parser.add_argument(
"--embedding-dim", type=int, default=128, help="Embedding dimension."
)
parser.add_argument(
"--average-len",
type=int,
default=27,
help="Sparse feature average lengths, default is 27",
)
parser.add_argument("--batch-size", type=int, default=100, help="The batch size.")
parser.add_argument(
"-i", "--iteration", type=int, default=100000, help="The number of iterations."
)
parser.add_argument(
"--flush-cache", action="store_true", help="If true, flush cache"
)
args, extra_args = parser.parse_known_args()
core.GlobalInit(["python"] + extra_args)
benchmark_sparse_lengths_sum(
args.dtype,
args.embedding_size,
args.embedding_dim,
args.average_len,
args.batch_size,
args.iteration,
args.flush_cache,
)
|