1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
import numpy as np
from caffe2.python import core, workspace
from caffe2.python.test_util import TestCase
class TestSplitOpCost(TestCase):
def _verify_cost(self, workspace, split_op):
flops, bytes_written, bytes_read = workspace.GetOperatorCost(
split_op, split_op.input
)
self.assertEqual(flops, 0)
self.assertEqual(
bytes_read,
sum(workspace.FetchBlob(b).nbytes for b in split_op.input),
)
self.assertEqual(
bytes_written,
sum(workspace.FetchBlob(b).nbytes for b in split_op.output),
)
def test_columnwise_equal_outputSplit(self):
workspace.ResetWorkspace()
workspace.FeedBlob("input", np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32))
split_op = core.CreateOperator(
"Split",
["input"],
["output_1", "output_2", "output_3"],
)
workspace.RunOperatorOnce(split_op)
output_1 = workspace.FetchBlob("output_1")
self.assertTupleEqual(output_1.shape, (2, 1))
np.testing.assert_array_equal(output_1, [[1], [4]])
output_2 = workspace.FetchBlob("output_2")
np.testing.assert_array_equal(output_2, [[2], [5]])
output_3 = workspace.FetchBlob("output_3")
np.testing.assert_array_equal(output_3, [[3], [6]])
self._verify_cost(workspace, split_op)
def test_rowwise_equal_outputSplit(self):
workspace.ResetWorkspace()
workspace.FeedBlob("input", np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32))
split_op = core.CreateOperator(
"Split",
["input"],
["output_1", "output_2"],
axis=0,
)
workspace.RunOperatorOnce(split_op)
output_1 = workspace.FetchBlob("output_1")
self.assertTupleEqual(output_1.shape, (1, 3))
np.testing.assert_array_equal(output_1, [[1, 2, 3]])
output_2 = workspace.FetchBlob("output_2")
np.testing.assert_array_equal(output_2, [[4, 5, 6]])
self._verify_cost(workspace, split_op)
def test_columnwise_equal_outputSplit_columnRemoved(self):
workspace.ResetWorkspace()
workspace.FeedBlob("input", np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32))
# To be able to use 'add_axis' (which should have been called 'remove_axis') on 'axis',
# the dimensions of split tensors must match on 'axis'
split_op = core.CreateOperator(
"Split",
["input"],
["output_1", "output_2", "output_3"],
axis=1,
add_axis=1,
)
workspace.RunOperatorOnce(split_op)
output_1 = workspace.FetchBlob("output_1")
self.assertTupleEqual(output_1.shape, (2,))
np.testing.assert_array_equal(output_1, [1, 4])
output_2 = workspace.FetchBlob("output_2")
np.testing.assert_array_equal(output_2, [2, 5])
output_3 = workspace.FetchBlob("output_3")
np.testing.assert_array_equal(output_3, [3, 6])
self._verify_cost(workspace, split_op)
def test_rowwise_equal_outputSplit_rowRemoved(self):
workspace.ResetWorkspace()
workspace.FeedBlob("input", np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32))
split_op = core.CreateOperator(
"Split",
["input"],
["output_1", "output_2"],
axis=0,
add_axis=1,
)
workspace.RunOperatorOnce(split_op)
output_1 = workspace.FetchBlob("output_1")
self.assertTupleEqual(output_1.shape, (3,))
np.testing.assert_array_equal(output_1, [1, 2, 3])
output_2 = workspace.FetchBlob("output_2")
np.testing.assert_array_equal(output_2, [4, 5, 6])
self._verify_cost(workspace, split_op)
def test_rowwise_unequal_argSplit(self):
workspace.ResetWorkspace()
workspace.FeedBlob(
"input", np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int32)
)
split_op = core.CreateOperator(
"Split",
["input"],
["output_1", "output_2"],
axis=0,
split=[1, 2],
)
workspace.RunOperatorOnce(split_op)
output_1 = workspace.FetchBlob("output_1")
self.assertTupleEqual(output_1.shape, (1, 3))
np.testing.assert_array_equal(output_1, [[1, 2, 3]])
output_2 = workspace.FetchBlob("output_2")
self.assertTupleEqual(output_2.shape, (2, 3))
np.testing.assert_array_equal(output_2, [[4, 5, 6], [7, 8, 9]])
self._verify_cost(workspace, split_op)
def test_rowwise_unequal_argSplit_rowRemoved(self):
workspace.ResetWorkspace()
workspace.FeedBlob(
"input", np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int32)
)
split_op = core.CreateOperator(
"Split",
["input"],
["output_1", "output_2", "output_3"],
axis=0,
split=[1, 1, 1],
add_axis=1,
)
workspace.RunOperatorOnce(split_op)
output_1 = workspace.FetchBlob("output_1")
self.assertTupleEqual(output_1.shape, (3,))
np.testing.assert_array_equal(output_1, [1, 2, 3])
output_2 = workspace.FetchBlob("output_2")
np.testing.assert_array_equal(output_2, [4, 5, 6])
output_3 = workspace.FetchBlob("output_3")
np.testing.assert_array_equal(output_3, [7, 8, 9])
self._verify_cost(workspace, split_op)
def test_rowwise_unequal_blobSplit(self):
workspace.ResetWorkspace()
workspace.FeedBlob(
"input", np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int32)
)
workspace.FeedBlob("split", np.array([1, 2], dtype=np.int32))
split_op = core.CreateOperator(
"Split",
["input", "split"],
["output_1", "output_2"],
axis=0,
)
workspace.RunOperatorOnce(split_op)
output_1 = workspace.FetchBlob("output_1")
self.assertTupleEqual(output_1.shape, (1, 3))
np.testing.assert_array_equal(output_1, [[1, 2, 3]])
output_2 = workspace.FetchBlob("output_2")
self.assertTupleEqual(output_2.shape, (2, 3))
np.testing.assert_array_equal(output_2, [[4, 5, 6], [7, 8, 9]])
self._verify_cost(workspace, split_op)
def test_columnwise_unequal_argSplit(self):
workspace.ResetWorkspace()
workspace.FeedBlob("input", np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32))
split_op = core.CreateOperator(
"Split",
["input"],
["output_1", "output_2"],
axis=1,
split=[1, 2],
)
workspace.RunOperatorOnce(split_op)
output_1 = workspace.FetchBlob("output_1")
self.assertTupleEqual(output_1.shape, (2, 1))
np.testing.assert_array_equal(output_1, [[1], [4]])
output_2 = workspace.FetchBlob("output_2")
self.assertTupleEqual(output_2.shape, (2, 2))
np.testing.assert_array_equal(output_2, [[2, 3], [5, 6]])
self._verify_cost(workspace, split_op)
def test_columnWise_unequal_blobSplit_columnRemoved(self):
workspace.ResetWorkspace()
workspace.FeedBlob("input", np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32))
workspace.FeedBlob("split", np.array([1, 1, 1], dtype=np.int32))
split_op = core.CreateOperator(
"Split",
["input", "split"],
["output_1", "output_2", "output_3"],
axis=1,
add_axis=1,
)
workspace.RunOperatorOnce(split_op)
output_1 = workspace.FetchBlob("output_1")
self.assertTupleEqual(output_1.shape, (2,))
np.testing.assert_array_equal(output_1, [1, 4])
output_2 = workspace.FetchBlob("output_2")
np.testing.assert_array_equal(output_2, [2, 5])
output_3 = workspace.FetchBlob("output_3")
np.testing.assert_array_equal(output_3, [3, 6])
self._verify_cost(workspace, split_op)
def test_equal_outputSplit_NHWC(self):
workspace.ResetWorkspace()
workspace.FeedBlob("input", np.random.rand(2, 5, 7, 9).astype(np.int32))
split_op = core.CreateOperator(
"Split",
["input"],
["output_1", "output_2", "output_3"],
order="NHWC",
)
workspace.RunOperatorOnce(split_op)
for b in split_op.output:
self.assertTupleEqual(workspace.FetchBlob(b).shape, (2, 5, 7, 3))
self._verify_cost(workspace, split_op)
|