1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
import functools
from hypothesis import given, settings, HealthCheck
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
class TestStorm(hu.HypothesisTestCase):
@given(inputs=hu.tensors(n=3),
grad_sq_sum=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
lr=st.floats(min_value=0.01, max_value=1.0,
allow_nan=False, allow_infinity=False),
momentum=st.floats(min_value=0.1, max_value=100.0,
allow_nan=False, allow_infinity=False),
beta=st.floats(min_value=0.1, max_value=10.0,
allow_nan=False, allow_infinity=False),
**hu.gcs_cpu_only)
def test_storm_dense(self, inputs, grad_sq_sum, lr, momentum, beta, gc, dc):
param, moment, grad = inputs
grad_sq_sum = np.array([grad_sq_sum], dtype=np.float32)
lr = np.array([lr], dtype=np.float32)
op = core.CreateOperator(
"Storm",
["param", "moment", "grad_sq_sum", "grad", "lr"],
["param", "moment", "grad_sq_sum"],
momentum=momentum,
beta=beta,
device_option=gc
)
def ref_dense(param, moment, grad_sq_sum, grad, lr, momentum, beta):
grad_sq_sum_out = grad_sq_sum + np.sum(grad * grad)
nlr = lr * np.power(beta + grad_sq_sum_out, -1.0 / 3.0)
alpha = momentum * np.square(nlr)
moment_out = grad + (1 - alpha) * (moment - grad)
param_out = param + nlr * moment_out
return (param_out.astype(np.float32), moment_out.astype(np.float32),
grad_sq_sum_out.astype(np.float32))
self.assertReferenceChecks(
gc, op,
[param, moment, grad_sq_sum, grad, lr],
functools.partial(ref_dense, momentum=momentum, beta=beta)
)
# Suppress filter_too_much health check.
# Likely caused by `assume` call falling through too often.
@settings(suppress_health_check=[HealthCheck.filter_too_much])
@given(inputs=hu.tensors(n=3),
grad_sq_sum=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
lr=st.floats(min_value=0.01, max_value=1.0,
allow_nan=False, allow_infinity=False),
momentum=st.floats(min_value=0.1, max_value=100.0,
allow_nan=False, allow_infinity=False),
beta=st.floats(min_value=0.1, max_value=10.0,
allow_nan=False, allow_infinity=False),
**hu.gcs_cpu_only)
def test_storm_sparse(self, inputs, grad_sq_sum, lr,
momentum, beta, gc, dc):
param, moment, grad = inputs
grad_sq_sum = np.array([grad_sq_sum], dtype=np.float32)
lr = np.array([lr], dtype=np.float32)
# Create an indexing array containing values that are lists of indices,
# which index into grad
indices = np.random.choice(np.arange(grad.shape[0]),
size=np.random.randint(grad.shape[0]),
replace=False)
# Sparsify grad
grad = grad[indices]
op = core.CreateOperator(
"SparseStorm",
["param", "moment", "grad_sq_sum", "grad", "indices", "lr"],
["param", "moment", "grad_sq_sum"],
momentum=momentum,
beta=beta,
device_option=gc)
def ref_sparse(param, moment, grad_sq_sum, grad, indices,
lr, momentum, beta):
param_out = np.copy(param)
moment_out = np.copy(moment)
grad_sq_sum_out = np.copy(grad_sq_sum)
grad_sq_sum_out = grad_sq_sum + np.sum(grad * grad)
nlr = lr * np.power(beta + grad_sq_sum_out, -1.0 / 3.0)
alpha = momentum * np.square(nlr)
for i, index in enumerate(indices):
gi = grad[i]
moment_out[index] = gi + (1 - alpha) * (moment[index] - gi)
param_out[index] = param[index] + nlr * moment_out[index]
return (param_out.astype(np.float32), moment_out.astype(np.float32),
grad_sq_sum_out.astype(np.float32))
self.assertReferenceChecks(
gc, op,
[param, moment, grad_sq_sum, grad, indices, lr],
functools.partial(ref_sparse, momentum=momentum, beta=beta)
)
@given(inputs=hu.tensors(n=2),
grad_sq_sum=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
lr=st.floats(min_value=0.01, max_value=1.0,
allow_nan=False, allow_infinity=False),
momentum=st.floats(min_value=0.1, max_value=100.0,
allow_nan=False, allow_infinity=False),
beta=st.floats(min_value=0.1, max_value=10.0,
allow_nan=False, allow_infinity=False),
data_strategy=st.data(),
**hu.gcs_cpu_only)
def test_storm_sparse_empty(self, inputs, grad_sq_sum, lr, momentum,
beta, data_strategy, gc, dc):
param, moment = inputs
grad_sq_sum = np.array([grad_sq_sum], dtype=np.float32)
lr = np.array([lr], dtype=np.float32)
grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
indices = np.empty(shape=(0,), dtype=np.int64)
op = core.CreateOperator(
"SparseStorm",
["param", "moment", "grad_sq_sum", "grad", "indices", "lr"],
["param", "moment", "grad_sq_sum"],
momentum=momentum,
beta=beta,
device_option=gc)
def ref_sparse_empty(param, moment, grad_sq_sum, grad, indices,
lr, momentum, beta):
param_out = np.copy(param)
moment_out = np.copy(moment)
grad_sq_sum_out = np.copy(grad_sq_sum)
return (param_out.astype(np.float32), moment_out.astype(np.float32),
grad_sq_sum_out.astype(np.float32))
self.assertReferenceChecks(
gc, op,
[param, moment, grad_sq_sum, grad, indices, lr],
functools.partial(ref_sparse_empty, momentum=momentum, beta=beta)
)
|