File: storm_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (157 lines) | stat: -rw-r--r-- 6,507 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157





import functools

from hypothesis import given, settings, HealthCheck
import hypothesis.strategies as st
import numpy as np

from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu


class TestStorm(hu.HypothesisTestCase):
    @given(inputs=hu.tensors(n=3),
           grad_sq_sum=st.floats(min_value=0.01, max_value=0.99,
                                 allow_nan=False, allow_infinity=False),
           lr=st.floats(min_value=0.01, max_value=1.0,
                        allow_nan=False, allow_infinity=False),
           momentum=st.floats(min_value=0.1, max_value=100.0,
                              allow_nan=False, allow_infinity=False),
           beta=st.floats(min_value=0.1, max_value=10.0,
                          allow_nan=False, allow_infinity=False),
           **hu.gcs_cpu_only)
    def test_storm_dense(self, inputs, grad_sq_sum, lr, momentum, beta, gc, dc):
        param, moment, grad = inputs
        grad_sq_sum = np.array([grad_sq_sum], dtype=np.float32)
        lr = np.array([lr], dtype=np.float32)

        op = core.CreateOperator(
            "Storm",
            ["param", "moment", "grad_sq_sum", "grad", "lr"],
            ["param", "moment", "grad_sq_sum"],
            momentum=momentum,
            beta=beta,
            device_option=gc
        )

        def ref_dense(param, moment, grad_sq_sum, grad, lr, momentum, beta):
            grad_sq_sum_out = grad_sq_sum + np.sum(grad * grad)
            nlr = lr * np.power(beta + grad_sq_sum_out, -1.0 / 3.0)
            alpha = momentum * np.square(nlr)
            moment_out = grad + (1 - alpha) * (moment - grad)
            param_out = param + nlr * moment_out

            return (param_out.astype(np.float32), moment_out.astype(np.float32),
                    grad_sq_sum_out.astype(np.float32))

        self.assertReferenceChecks(
            gc, op,
            [param, moment, grad_sq_sum, grad, lr],
            functools.partial(ref_dense, momentum=momentum, beta=beta)
        )

    # Suppress filter_too_much health check.
    # Likely caused by `assume` call falling through too often.
    @settings(suppress_health_check=[HealthCheck.filter_too_much])
    @given(inputs=hu.tensors(n=3),
           grad_sq_sum=st.floats(min_value=0.01, max_value=0.99,
                                 allow_nan=False, allow_infinity=False),
           lr=st.floats(min_value=0.01, max_value=1.0,
                        allow_nan=False, allow_infinity=False),
           momentum=st.floats(min_value=0.1, max_value=100.0,
                              allow_nan=False, allow_infinity=False),
           beta=st.floats(min_value=0.1, max_value=10.0,
                          allow_nan=False, allow_infinity=False),
           **hu.gcs_cpu_only)
    def test_storm_sparse(self, inputs, grad_sq_sum, lr,
                          momentum, beta, gc, dc):
        param, moment, grad = inputs
        grad_sq_sum = np.array([grad_sq_sum], dtype=np.float32)
        lr = np.array([lr], dtype=np.float32)

        # Create an indexing array containing values that are lists of indices,
        # which index into grad
        indices = np.random.choice(np.arange(grad.shape[0]),
                                   size=np.random.randint(grad.shape[0]),
                                   replace=False)

        # Sparsify grad
        grad = grad[indices]

        op = core.CreateOperator(
            "SparseStorm",
            ["param", "moment", "grad_sq_sum", "grad", "indices", "lr"],
            ["param", "moment", "grad_sq_sum"],
            momentum=momentum,
            beta=beta,
            device_option=gc)

        def ref_sparse(param, moment, grad_sq_sum, grad, indices,
                       lr, momentum, beta):
            param_out = np.copy(param)
            moment_out = np.copy(moment)
            grad_sq_sum_out = np.copy(grad_sq_sum)

            grad_sq_sum_out = grad_sq_sum + np.sum(grad * grad)
            nlr = lr * np.power(beta + grad_sq_sum_out, -1.0 / 3.0)
            alpha = momentum * np.square(nlr)
            for i, index in enumerate(indices):
                gi = grad[i]
                moment_out[index] = gi + (1 - alpha) * (moment[index] - gi)
                param_out[index] = param[index] + nlr * moment_out[index]

            return (param_out.astype(np.float32), moment_out.astype(np.float32),
                    grad_sq_sum_out.astype(np.float32))

        self.assertReferenceChecks(
            gc, op,
            [param, moment, grad_sq_sum, grad, indices, lr],
            functools.partial(ref_sparse, momentum=momentum, beta=beta)
        )

    @given(inputs=hu.tensors(n=2),
           grad_sq_sum=st.floats(min_value=0.01, max_value=0.99,
                                 allow_nan=False, allow_infinity=False),
           lr=st.floats(min_value=0.01, max_value=1.0,
                        allow_nan=False, allow_infinity=False),
           momentum=st.floats(min_value=0.1, max_value=100.0,
                              allow_nan=False, allow_infinity=False),
           beta=st.floats(min_value=0.1, max_value=10.0,
                          allow_nan=False, allow_infinity=False),
           data_strategy=st.data(),
           **hu.gcs_cpu_only)
    def test_storm_sparse_empty(self, inputs, grad_sq_sum, lr, momentum,
                                beta, data_strategy, gc, dc):
        param, moment = inputs
        grad_sq_sum = np.array([grad_sq_sum], dtype=np.float32)
        lr = np.array([lr], dtype=np.float32)

        grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
        indices = np.empty(shape=(0,), dtype=np.int64)

        op = core.CreateOperator(
            "SparseStorm",
            ["param", "moment", "grad_sq_sum", "grad", "indices", "lr"],
            ["param", "moment", "grad_sq_sum"],
            momentum=momentum,
            beta=beta,
            device_option=gc)

        def ref_sparse_empty(param, moment, grad_sq_sum, grad, indices,
                             lr, momentum, beta):
            param_out = np.copy(param)
            moment_out = np.copy(moment)
            grad_sq_sum_out = np.copy(grad_sq_sum)

            return (param_out.astype(np.float32), moment_out.astype(np.float32),
                    grad_sq_sum_out.astype(np.float32))

        self.assertReferenceChecks(
            gc, op,
            [param, moment, grad_sq_sum, grad, indices, lr],
            functools.partial(ref_sparse_empty, momentum=momentum, beta=beta)
        )