File: weighted_sum_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (101 lines) | stat: -rw-r--r-- 3,052 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101





from caffe2.python import core
from hypothesis import given, settings

import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import numpy as np


class TestWeightedSumOp(serial.SerializedTestCase):

    @given(
        n=st.integers(1, 8), m=st.integers(1, 10), d=st.integers(1, 4),
        in_place=st.booleans(), engine=st.sampled_from(["", "CUDNN"]),
        seed=st.integers(min_value=0, max_value=65535),
        **hu.gcs)
    @settings(deadline=10000)
    def test_weighted_sum(
            self, n, m, d, in_place, engine, seed, gc, dc):
        input_names = []
        input_vars = []
        np.random.seed(seed)
        for i in range(m):
            X_name = 'X' + str(i)
            w_name = 'w' + str(i)
            input_names.extend([X_name, w_name])
            var = np.random.rand(n, d).astype(np.float32)
            vars()[X_name] = var
            input_vars.append(var)
            var = np.random.rand(1).astype(np.float32)
            vars()[w_name] = var
            input_vars.append(var)

        def weighted_sum_op_ref(*args):
            res = np.zeros((n, d))
            for i in range(m):
                res = res + args[2 * i + 1] * args[2 * i]

            return (res, )

        op = core.CreateOperator(
            "WeightedSum",
            input_names,
            [input_names[0]] if in_place else ['Y'],
            engine=engine,
        )

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=input_vars,
            reference=weighted_sum_op_ref,
        )
        self.assertDeviceChecks(dc, op, input_vars, [0])

    @given(n=st.integers(1, 8), m=st.integers(1, 10), d=st.integers(1, 4),
           grad_on_w=st.booleans(),
           seed=st.integers(min_value=0, max_value=65535), **hu.gcs_cpu_only)
    @settings(deadline=10000)
    def test_weighted_sum_grad(
            self, n, m, d, grad_on_w, seed, gc, dc):
        input_names = []
        input_vars = []
        np.random.seed(seed)
        for i in range(m):
            X_name = 'X' + str(i)
            w_name = 'w' + str(i)
            input_names.extend([X_name, w_name])
            var = np.random.rand(n, d).astype(np.float32)
            vars()[X_name] = var
            input_vars.append(var)
            var = np.random.rand(1).astype(np.float32)
            vars()[w_name] = var
            input_vars.append(var)

        op = core.CreateOperator(
            "WeightedSum",
            input_names,
            ['Y'],
            grad_on_w=grad_on_w,
        )

        output_to_check_grad = (
            range(2 * m) if grad_on_w else range(0, 2 * m, 2))
        for i in output_to_check_grad:
            self.assertGradientChecks(
                device_option=gc,
                op=op,
                inputs=input_vars,
                outputs_to_check=i,
                outputs_with_grads=[0],
            )


if __name__ == "__main__":
    serial.testWithArgs()