1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
import functools
import logging
import hypothesis
from hypothesis import given, settings, HealthCheck
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
logger = logging.getLogger(__name__)
def ref_wngrad(param_in, seq_b_in, grad, lr, epsilon,
output_effective_lr=False,
output_effective_lr_and_update=False):
# helper functions for wngrad operator test
seq_b_out = seq_b_in + 1.0 / (seq_b_in + epsilon) * np.sum(grad * grad)
effective_lr = lr / (seq_b_in + epsilon)
grad_adj = effective_lr * grad
param_out = param_in + grad_adj
if output_effective_lr_and_update:
return (param_out.astype(np.float32), seq_b_out.astype(np.float32),
effective_lr.astype(np.float32),
grad_adj.astype(np.float32))
elif output_effective_lr:
return (param_out.astype(np.float32), seq_b_out.astype(np.float32),
effective_lr.astype(np.float32))
return (param_out.astype(np.float32), seq_b_out.astype(np.float32))
def wngrad_sparse_test_helper(parent_test, inputs, seq_b, lr, epsilon,
engine, gc, dc):
# helper functions for wngrad operator test
param, grad = inputs
seq_b = np.array([seq_b, ], dtype=np.float32)
lr = np.array([lr], dtype=np.float32)
# Create an indexing array containing values that are lists of indices,
# which index into grad
indices = np.random.choice(np.arange(grad.shape[0]),
size=np.random.randint(grad.shape[0]), replace=False)
# Sparsify grad
grad = grad[indices]
op = core.CreateOperator(
"SparseWngrad",
["param", "seq_b", "indices", "grad", "lr"],
["param", "seq_b"],
epsilon=epsilon,
engine=engine,
device_option=gc)
def ref_sparse(param, seq_b, indices, grad, lr):
param_out = np.copy(param)
seq_b_out = np.copy(seq_b)
seq_b_out = seq_b + 1.0 / seq_b * np.sum(grad * grad)
for i, index in enumerate(indices):
param_out[index] = param[index] + lr / (seq_b + epsilon) * grad[i]
return (param_out, seq_b_out)
logger.info('test_sparse_adagrad with full precision embedding')
seq_b_i = seq_b.astype(np.float32)
param_i = param.astype(np.float32)
parent_test.assertReferenceChecks(
gc, op, [param_i, seq_b_i, indices, grad, lr],
ref_sparse
)
class TestWngrad(serial.SerializedTestCase):
@given(inputs=hu.tensors(n=2),
seq_b=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs_cpu_only)
@settings(deadline=10000)
def test_wngrad_dense_base(self, inputs, seq_b, lr, epsilon, gc, dc):
param, grad = inputs
seq_b = np.array([seq_b, ], dtype=np.float32)
lr = np.array([lr], dtype=np.float32)
op = core.CreateOperator(
"Wngrad",
["param", "seq_b", "grad", "lr"],
["param", "seq_b"],
epsilon=epsilon,
device_option=gc,
)
self.assertReferenceChecks(
gc, op,
[param, seq_b, grad, lr],
functools.partial(ref_wngrad, epsilon=epsilon))
@given(inputs=hu.tensors(n=2),
seq_b=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs_cpu_only)
@settings(deadline=10000)
def test_wngrad_dense_output_effective_lr(self, inputs, seq_b,
lr, epsilon, gc, dc):
param, grad = inputs
seq_b = np.array([seq_b, ], dtype=np.float32)
lr = np.array([lr], dtype=np.float32)
op = core.CreateOperator(
"Wngrad",
["param", "seq_b", "grad", "lr"],
["param", "seq_b", "effective_lr"],
epsilon=epsilon,
device_option=gc,
)
self.assertReferenceChecks(
gc, op,
[param, seq_b, grad, lr],
functools.partial(ref_wngrad, epsilon=epsilon,
output_effective_lr=True))
@given(inputs=hu.tensors(n=2),
seq_b=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs_cpu_only)
@settings(deadline=10000)
def test_wngrad_dense_output_effective_lr_and_update(
self, inputs, seq_b, lr, epsilon, gc, dc):
param, grad = inputs
seq_b = np.abs(np.array([seq_b, ], dtype=np.float32))
lr = np.array([lr], dtype=np.float32)
op = core.CreateOperator(
"Wngrad",
["param", "seq_b", "grad", "lr"],
["param", "seq_b", "effective_lr", "update"],
epsilon=epsilon,
device_option=gc,
)
self.assertReferenceChecks(
gc, op,
[param, seq_b, grad, lr],
functools.partial(ref_wngrad, epsilon=epsilon,
output_effective_lr_and_update=True))
# Suppress filter_too_much health check.
# Likely caused by `assume` call falling through too often.
@settings(suppress_health_check=[HealthCheck.filter_too_much], deadline=10000)
@given(inputs=hu.tensors(n=2),
seq_b=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs_cpu_only)
def test_sparse_wngrad(self, inputs, seq_b, lr, epsilon, gc, dc):
return wngrad_sparse_test_helper(self, inputs, seq_b, lr, epsilon,
None, gc, dc)
@given(inputs=hu.tensors(n=1),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
seq_b=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs_cpu_only)
@settings(deadline=10000)
def test_sparse_wngrad_empty(self, inputs, seq_b, lr, epsilon, gc, dc):
param = inputs[0]
seq_b = np.array([seq_b, ], dtype=np.float32)
lr = np.array([lr], dtype=np.float32)
grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
indices = np.empty(shape=(0,), dtype=np.int64)
hypothesis.note('indices.shape: %s' % str(indices.shape))
op = core.CreateOperator(
"SparseWngrad",
["param", "seq_b", "indices", "grad", "lr"],
["param", "seq_b"],
epsilon=epsilon,
device_option=gc)
def ref_sparse(param, seq_b, indices, grad, lr):
param_out = np.copy(param)
seq_b_out = np.copy(seq_b)
return (param_out, seq_b_out)
print('test_sparse_adagrad_empty with full precision embedding')
seq_b_i = seq_b.astype(np.float32)
param_i = param.astype(np.float32)
self.assertReferenceChecks(
gc, op, [param_i, seq_b_i, indices, grad, lr], ref_sparse
)
|