File: optimizer.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (2315 lines) | stat: -rw-r--r-- 80,950 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
# @package optimizer
# Module caffe2.python.optimizer


import copy
import logging
from collections import defaultdict, namedtuple

import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import core, scope, utils, workspace
from caffe2.python.modeling import parameter_info
from past.builtins import basestring


_LEARNING_RATE_INJECTION = "lr_injection"

AuxOptimizerParams = namedtuple("AuxOptimizerParams", ["local", "shared"])
_optimizer_instance_count = defaultdict(int)

FP16_ENGINES = ["SIMD_Q_FP16", "SIMD_Q_STOC_FP16", "SIMD_Q_STOC_MKL_FP16"]

logger = logging.getLogger(__name__)

def reset_optimizer_instance_count():
    """
    This function clears the _optimizer_instance_count. And keeps it
    empty. This functionality is needed in some situations where
    optimizer instance count might not reset even though the workplace is reset.
    """
    _optimizer_instance_count.clear()


class Optimizer(object):
    def __init__(self):
        self._aux_params = AuxOptimizerParams(local=[], shared=[])
        self._instance_num = _optimizer_instance_count[self.__class__.__name__]
        _optimizer_instance_count[self.__class__.__name__] += 1
        self._lr_multiplier = None
        self._local_lr_multiplier = None
        self._local_lr_multiplier_on_gpu = False
        self._use_dedicated_lr_iteration_counter = False

    """
    Adds optimization operators to the net for given parameter and its gradient
    Parameter is specified by either 'param' being a ParameterInfo object.
    In this case  param.grad has to be set

    Or by 'param' being a BlobReference and 'grad' being a BlobReference for its
    gradient.
    """

    def __call__(self, net, param_init_net, param, grad=None):
        if grad is None:
            assert isinstance(
                param, parameter_info.ParameterInfo
            ), "Expected parameter to be of type ParameterInfo, got {}".format(param)
            assert param.grad is not None
        else:
            if isinstance(param, basestring):
                param = core.BlobReference(param)
            param = parameter_info.ParameterInfo(param_id=None, param=param, grad=grad)

        self._run(net, param_init_net, param)

    def _run(self, net, param_init_net, param_info):
        raise Exception("Not Implemented")

    def get_cpu_blob_name(self, base_str, node_name=""):
        classname = self.__class__.__name__
        return "%s_%d_%s%s_cpu" % (classname, self._instance_num, base_str, node_name)

    def get_gpu_blob_name(self, base_str, gpu_id, node_name):
        classname = self.__class__.__name__
        return "%s_%d_%s%s_gpu%d" % (
            classname,
            self._instance_num,
            base_str,
            node_name,
            gpu_id,
        )

    @property
    def attributes(self):
        # return a dict that contains attributes related to init args only
        attr = copy.deepcopy(self.__dict__)
        del attr["_instance_num"]
        return attr

    @property
    def use_dedicated_lr_iteration_counter(self):
        return self._use_dedicated_lr_iteration_counter

    @use_dedicated_lr_iteration_counter.setter
    def use_dedicated_lr_iteration_counter(self, val):
        self._use_dedicated_lr_iteration_counter = val

    def make_unique_blob_name(self, base_str):
        """
        Returns a blob name that will be unique to the current device
        and optimizer instance.
        """
        current_scope = scope.CurrentDeviceScope()
        if current_scope is None:
            return self.get_cpu_blob_name(base_str)

        if core.IsGPUDeviceType(current_scope.device_type):
            return self.get_gpu_blob_name(
                base_str, current_scope.device_id, current_scope.node_name
            )
        else:
            return self.get_cpu_blob_name(base_str, current_scope.node_name)

    def build_lr(
        self,
        net,
        param_init_net,
        base_learning_rate,
        learning_rate_blob=None,
        policy="fixed",
        iter_val=0,
        **kwargs
    ):
        if learning_rate_blob is None:
            learning_rate_blob = self.make_unique_blob_name("lr")

        if self._use_dedicated_lr_iteration_counter:
            iteration = utils.BuildUniqueMutexIter(
                param_init_net,
                net,
                iter=utils.OPTIMIZER_ITERATION_LR_NAME,
                iter_mutex=utils.ITERATION_MUTEX_LR_NAME,
                iter_val=iter_val,
            )
            logger.info(f"Created dedicated learning rate iteration counter: {iteration}")
        else:
            iteration = utils.BuildUniqueMutexIter(param_init_net, net, iter_val=iter_val)

        if not net.BlobIsDefined(learning_rate_blob):
            # There is one interesting thing here: since we are minimizing, we are
            # doing "descent" so the learning rate is set to be negative.
            lr = net.LearningRate(
                [iteration],
                learning_rate_blob,
                base_lr=-base_learning_rate,
                policy=policy,
                **kwargs
            )
        else:
            lr = net.GetBlobRef(learning_rate_blob)

        if self._lr_multiplier is not None:
            lr_multiplier = net.CopyFromCPUInput(
                self._lr_multiplier, self.make_unique_blob_name("lr_multiplier")
            )

            lr = net.Mul(
                [lr, lr_multiplier],
                self.make_unique_blob_name("scaled_lr"),
                broadcast=1,
            )

        if self._local_lr_multiplier is not None:
            current_scope = scope.CurrentDeviceScope()
            if (
                current_scope is not None
                and core.IsGPUDeviceType(current_scope.device_type)
                and not self._local_lr_multiplier_on_gpu
            ):
                local_lr_multiplier = net.CopyFromCPUInput(
                    self._local_lr_multiplier,
                    self.make_unique_blob_name("local_lr_multiplier"),
                )
            else:
                local_lr_multiplier = self._local_lr_multiplier

            lr = net.Mul(
                [lr, local_lr_multiplier],
                self.make_unique_blob_name("local_scaled_lr"),
                broadcast=1,
            )

        return lr, iteration

    def build_non_lr_iter(
        self,
        net,
        param_init_net,
        iter_val=0,
    ):
        assert (
            self._use_dedicated_lr_iteration_counter
        ), "This method should be only called when dedicated learning rate iteration counter is used."

        iteration = utils.BuildUniqueMutexIter(param_init_net, net, iter_val=iter_val)
        logger.info(f"Created iteration counter for non learning rate purposes: {iteration}")

        # We need to create a dummy learning rate operator to enforce that
        # iteration counter blob being placed in the trainer nodes. Otherwise,
        # the Automatic Device Placement (ADP) algorithm for Hierachical
        # Training (HT) will encounter issues to distribute blobs across group
        # parameter servers. Note that this learning rate operator will not be
        # used for any other purpose.
        learning_rate_blob = self.make_unique_blob_name("iter_placement_hint")
        if not net.BlobIsDefined(learning_rate_blob):
            net.LearningRate(
                [iteration],
                learning_rate_blob,
                base_lr=1.0,
                policy="fixed",
            )

        return iteration

    def add_lr_multiplier(self, lr_multiplier):
        """
        Set the global learning rate multiplier. If a multiplier already
        existed, this will overwrite the existing multiplier. The multiplier is
        used for all future calls to _run(), unless it is overwritten.
        """
        self._lr_multiplier = lr_multiplier

    def _add_local_lr_multiplier(self, local_lr_multiplier, is_gpu_blob=False):
        """
        Set the local learning rate multiplier. This local multiplier is
        multiplied with the global learning rate multiplier if it exists. As
        with the global learning rate multiplier, this multiplier will be
        used for all future calls to _run(), so please call
        _clear_local_lr_multiplier() at the beginning of the optimizer's _run()
        before optionally calling this function.
        """
        self._local_lr_multiplier = local_lr_multiplier
        self._local_lr_multiplier_on_gpu = is_gpu_blob

    def _clear_local_lr_multiplier(self):
        self._local_lr_multiplier = None
        self._local_lr_multiplier_on_gpu = False

    @staticmethod
    def dedup(net, sparse_dedup_aggregator, grad):
        assert isinstance(
            grad, core.GradientSlice
        ), "Dedup only works for sparse gradient, got {}".format(grad)
        if sparse_dedup_aggregator:
            return net.DeduplicateGradientSlices(
                grad, aggregator=sparse_dedup_aggregator
            )
        else:
            return grad

    def get_auxiliary_parameters(self):
        """Returns a list of auxiliary parameters.

        Returns:
            aux_params: A namedtuple, AuxParams.

            aux_params.local stores a list of blobs. Each blob is a local
            auxiliary parameter. A local auxiliary parameter is a parameter in
            parallel to a learning rate parameter. Take adagrad as an example,
            the local auxiliary parameter is the squared sum parameter, because
            every learning rate has a squared sum associated with it.

            aux_params.shared also stores a list of blobs. Each blob is a shared
            auxiliary parameter. A shared auxiliary parameter is a parameter
            that is shared across all the learning rate parameters. Take adam as
            an example, the iteration parameter is a shared parameter, because
            all the learning rates share the same iteration parameter.
        """
        return self._aux_params

    # TODO(xlwang): In transfer learning, parameter initialized from pretrained
    # model might require a different learning rate than otherwise initialized.
    # To this end, here we implement a python solution where
    # `base_learning_rate` is scaled by `scale`, by calling
    # `scale_learning_rate`; Alternatively, we can achieve same effect by
    # rewriting the LearningRate operator in C++
    # Note that it is the responsibility of specific optimizer to decide what
    # logic should be used for `scale_learning_rate`
    def scale_learning_rate(self, *args, **kwargs):
        raise NotImplementedError(
            "Optimizer Need to Implement `scale_learning_rate` method."
        )

    def create_lars_inputs(self, param_init_net, weight_decay, trust, lr_max):
        wd = param_init_net.ConstantFill(
            [], "weight_decay", shape=[1], value=weight_decay
        )
        trust = param_init_net.ConstantFill([], "trust", shape=[1], value=trust)
        lr_max = param_init_net.ConstantFill([], "lr_max", shape=[1], value=lr_max)
        return wd, trust, lr_max


class SgdOptimizer(Optimizer):
    def __init__(
        self,
        base_learning_rate=0.01,
        policy="fixed",
        momentum=0.0,
        nesterov=True,
        sparse_dedup_aggregator=None,
        lars=None,
        **kwargs
    ):
        super(SgdOptimizer, self).__init__()
        self.base_learning_rate = base_learning_rate
        self.policy = policy
        self.momentum = momentum
        self.nesterov = nesterov
        self.sparse_dedup_aggregator = sparse_dedup_aggregator
        self.lars = lars
        self.init_kwargs = kwargs

    def _run(self, net, param_init_net, param_info):
        param = param_info.blob
        grad = param_info.grad
        if self.base_learning_rate == 0:
            return
        assert (
            self.base_learning_rate > 0
        ), "Expect positive base learning rate, got {}".format(self.base_learning_rate)

        self._clear_local_lr_multiplier()

        # TODO(zqq): support LARS for sparse parameters
        if self.lars is not None and not isinstance(grad, core.GradientSlice):
            assert self.lars >= 0, "Lars offset must be nonnegative, got {}".format(
                self.lars
            )
            wd, trust, lr_max = self.create_lars_inputs(
                param_init_net, 0.0, 1.0, np.finfo(np.float32).max
            )
            lr_lars_multiplier = net.Lars(
                [param, grad, wd, trust, lr_max],
                self.make_unique_blob_name(str(param) + "_lars"),
                offset=self.lars,
                lr_min=0.0,
            )
            current_scope = scope.CurrentDeviceScope()
            self._add_local_lr_multiplier(
                lr_lars_multiplier,
                is_gpu_blob=(
                    current_scope is not None
                    and core.IsGPUDeviceType(current_scope.device_type)
                ),
            )

        # We need negative sign for LR when used directly with WeightedSum
        # below.
        lr_sign = -1 if self.momentum else 1
        lr, _ = self.build_lr(
            net,
            param_init_net,
            base_learning_rate=self.base_learning_rate * lr_sign,
            policy=self.policy,
            **(self.init_kwargs)
        )

        dev = scope.CurrentDeviceScope()
        if dev is None:
            dev = core.DeviceOption(caffe2_pb2.CPU)

        # Each GPU/CPU must have its own ONE blob, thus modify the name
        # to include device information.
        ONE = param_init_net.ConstantFill(
            [],
            "ONE_{}_{}{}".format(dev.device_type, dev.device_id, dev.node_name),
            shape=[1],
            value=1.0,
        )

        self._aux_params.shared.append(ONE)

        if self.momentum > 0:
            momentum_data = param_init_net.ConstantFill(
                param, str(param) + "_momentum", value=0.0
            )
            self._aux_params.local.append(momentum_data)

        if isinstance(grad, core.GradientSlice):
            grad = self.dedup(net, self.sparse_dedup_aggregator, grad)
            if self.momentum > 0.0:
                net.SparseMomentumSGDUpdate(
                    [grad.values, momentum_data, lr, param, grad.indices],
                    [grad.values, momentum_data, param],
                    momentum=self.momentum,
                    nesterov=self.nesterov,
                )
            else:
                net.ScatterWeightedSum(
                    [param, ONE, grad.indices, grad.values, lr], param
                )
        else:
            if self.momentum > 0.0:
                net.MomentumSGDUpdate(
                    [grad, momentum_data, lr, param],
                    [grad, momentum_data, param],
                    momentum=self.momentum,
                    nesterov=self.nesterov,
                )
            else:
                coeff = lr

                net.WeightedSum([param, ONE, grad, coeff], param)

    def scale_learning_rate(self, scale):
        self.base_learning_rate *= scale
        return


class MultiPrecisionSgdOptimizer(SgdOptimizer):
    def __init__(
        self,
        base_learning_rate=0.1,
        momentum=0.0,
        policy="fixed",
        nesterov=True,
        sparse_dedup_aggregator=None,
        **kwargs
    ):
        super(MultiPrecisionSgdOptimizer, self).__init__(
            base_learning_rate=base_learning_rate,
            policy=policy,
            momentum=momentum,
            nesterov=nesterov,
            sparse_dedup_aggregator=sparse_dedup_aggregator,
            **kwargs
        )

    def _run(self, net, param_init_net, param_info):
        param = param_info.blob
        param_fp32 = (
            param_info.blob_copy[core.DataType.FLOAT]
            if param_info.blob_copy is not None
            else None
        )

        # If we have a straight fp32 parameter, run the base class
        if param_fp32 is None:
            return SgdOptimizer._run(self, net, param_init_net, param_info)

        grad = param_info.grad
        if self.base_learning_rate == 0:
            return
        assert (
            self.base_learning_rate > 0
        ), "Expect positive base learning rate, got {}".format(self.base_learning_rate)

        lr, _ = self.build_lr(
            net,
            param_init_net,
            base_learning_rate=-self.base_learning_rate,
            policy=self.policy,
            **(self.init_kwargs)
        )

        momentum_data = param_init_net.ConstantFill(
            param_fp32, str(param) + "_momentum", value=0.0
        )
        self._aux_params.local.append(momentum_data)

        assert not isinstance(
            grad, core.GradientSlice
        ), "MultiPrecisionSgd does not support sparse gradients"

        # Copy gradient to fp32
        grad_fp32 = net.HalfToFloat(grad, grad + "_fp32")

        # update (fused) in fp32
        net.MomentumSGDUpdate(
            [grad_fp32, momentum_data, lr, param_fp32],
            [grad_fp32, momentum_data, param_fp32],
            momentum=self.momentum,
            nesterov=self.nesterov,
        )

        # Copy updated param back to fp16
        net.FloatToHalf(param_fp32, param)


class FP16SgdOptimizer(SgdOptimizer):
    def __init__(
        self,
        base_learning_rate=0.1,
        momentum=0.0,
        policy="fixed",
        nesterov=True,
        weight_decay=0.0001,
        sparse_dedup_aggregator=None,
        **kwargs
    ):
        super(FP16SgdOptimizer, self).__init__(
            base_learning_rate=base_learning_rate,
            policy=policy,
            momentum=momentum,
            nesterov=nesterov,
            sparse_dedup_aggregator=sparse_dedup_aggregator,
            **kwargs
        )
        self.weight_decay = weight_decay

    def _run(self, net, param_init_net, param_info, fp32_update=False):

        fp32_update_flag = 0
        param_name = str(param_info.blob)

        # should only be triggered in FP16 training by SpatialBN, which
        # requires FP32 params in CuDNN.
        if param_name.find("spatbn") != -1:
            fp32_update = True

        if fp32_update:
            # doing a 32bit update
            # Have to assume param_info.blob is FP32 as there is no way
            # (that i currently know of) to query a blob's type in python
            fp32_update_flag = 1
            param = param_info.blob
            param_fp32 = param_info.blob
        else:
            if param_info.blob_copy is None:
                # doing a 32bit update
                # Have to assume param_info.blob is FP32 as there is no way
                # (that i currently know of) to query a blob's type in python
                fp32_update_flag = 1
                param = param_info.blob
                param_fp32 = param_info.blob
            else:
                if core.DataType.FLOAT in param_info.blob_copy:
                    param = param_info.blob
                    param_fp32 = param_info.blob_copy[core.DataType.FLOAT]
                elif core.DataType.FLOAT16 in param_info.blob_copy:
                    param = param_info.blob_copy[core.DataType.FLOAT16]
                    param_fp32 = param_info.blob
                else:
                    AssertionError(
                        "Unrecognized parameter format to be updated "
                        "by FP16 Optimizer. Parameter: {}".format(param_info.name)
                    )

        grad = param_info.grad

        if self.base_learning_rate == 0:
            return
        assert (
            self.base_learning_rate > 0
        ), "Expect positive base learning rate, got {}".format(self.base_learning_rate)

        lr, _ = self.build_lr(
            net,
            param_init_net,
            base_learning_rate=-self.base_learning_rate,
            policy=self.policy,
            **(self.init_kwargs)
        )

        momentum_data_fp32 = param_init_net.ConstantFill(
            param_fp32, str(param) + "_momentum_fp32", value=0.0
        )

        momentum_data = param_init_net.FloatToHalf(
            momentum_data_fp32, str(param) + "_momentum"
        )

        self._aux_params.local.append(momentum_data)

        assert not isinstance(
            grad, core.GradientSlice
        ), "FP16Sgd does not support sparse gradients"

        if fp32_update_flag == 0:
            net.FP16MomentumSGDUpdate(
                [grad, momentum_data, lr, param],
                [grad, momentum_data, param],
                momentum=self.momentum,
                nesterov=self.nesterov,
                weight_decay=self.weight_decay,
            )
        else:
            # flag set to 1, therefore doing FP32 update
            net.FP32MomentumSGDUpdate(
                [grad, momentum_data_fp32, lr, param],
                [grad, momentum_data_fp32, param],
                momentum=self.momentum,
                nesterov=self.nesterov,
                weight_decay=self.weight_decay,
            )


class WeightDecayBuilder(Optimizer):
    def __init__(self, weight_decay):
        self.weight_decay = weight_decay

    def _run(self, net, param_init_net, param_info):
        dev = scope.CurrentDeviceScope()
        if dev is None:
            dev = core.DeviceOption(caffe2_pb2.CPU)

        ONE = param_init_net.ConstantFill(
            [], "ONE_{}_{}".format(dev.device_type, dev.device_id), shape=[1], value=1.0
        )
        WD = param_init_net.ConstantFill(
            [],
            "wd_{}_{}".format(dev.device_type, dev.device_id),
            shape=[1],
            value=self.weight_decay,
        )

        if isinstance(param_info.grad, core.GradientSlice):
            raise ValueError("Weight decay does not yet support sparse gradients")
        else:
            net.WeightedSum(
                [param_info.grad, ONE, param_info.blob, WD], param_info.grad
            )


class AdagradOptimizer(Optimizer):
    def __init__(
        self,
        alpha=0.01,
        epsilon=1e-4,
        decay=1,
        weight_decay=0.0,
        policy="fixed",
        sparse_dedup_aggregator=None,
        rowWise=False,
        engine="",
        lars=None,
        output_effective_lr=False,
        output_effective_lr_and_update=False,
        pruning_options=None,
        swa_options=None,
        ema_options=None,
        weight_scale=None,
        counter_halflife=-1,
        use_dedicated_lr_iteration_counter=False,
        **kwargs
    ):
        super(AdagradOptimizer, self).__init__()
        self.alpha = alpha
        self.epsilon = epsilon
        self.decay = decay
        self.weight_decay = float(weight_decay)
        self.policy = policy
        self.sparse_dedup_aggregator = sparse_dedup_aggregator
        self.rowWise = rowWise
        self.engine = engine
        self.lars = lars
        self.output_effective_lr = output_effective_lr
        self.output_effective_lr_and_update = output_effective_lr_and_update
        self.counter_halflife = counter_halflife
        self.init_kwargs = kwargs
        self.weight_scale = weight_scale
        self.use_dedicated_lr_iteration_counter = use_dedicated_lr_iteration_counter

        self._process_pruning_options(pruning_options)
        self._process_swa_options(swa_options)
        self._process_ema_options(ema_options)

    def _process_swa_options(self, swa_options):
        self.swa_enabled = True if swa_options else False
        if self.swa_enabled:
            self.swa_avg_start_it = swa_options.get("swa_avg_start_it", None)
            self.swa_avg_end_it = swa_options.get("swa_avg_end_it", None)
            self.swa_feedback_start_it = swa_options.get("swa_feedback_start_it", None)
            self.swa_feedback_step = swa_options.get("swa_feedback_step", None)
            self.swa_feedback_end_it = swa_options.get("swa_feedback_end_it", None)

    def _process_ema_options(self, ema_options):
        self.ema_enabled = True if ema_options else False
        if self.ema_enabled:
            self.ema_start = ema_options.get("ema_start", None)
            self.ema_end = ema_options.get("ema_end", None)
            self.ema_step = ema_options.get("ema_step", None)
            self.ema_alpha = ema_options.get("ema_alpha", None)

    def _process_pruning_options(self, pruning_options):
        self.use_mask = False

        if pruning_options is None:
            pruning_options = {}
        else:
            assert isinstance(pruning_options, dict), (
                "pruning_options can only "
                "be provided as a dictionary, currently: {}".format(pruning_options)
            )

        self.mask_tensor = pruning_options.get("mask_tensor", None)
        self.mask_db_path = pruning_options.get("mask_db_path", None)
        self.mask_db_type = pruning_options.get("mask_db_type", None)
        self.mask_blob_name = pruning_options.get("mask_blob_name", None)
        self.prune_delays = pruning_options.get("prune_delays", [])
        self.prune_ratios = pruning_options.get("prune_ratios", [])
        self.prune_block_size = pruning_options.get("prune_block_size", 1)

        if self.mask_tensor is not None:
            assert (
                type(self.mask_tensor) is np.ndarray
            ), "mask_tensor must be a numpy array!"
            assert self.mask_db_path is None, (
                "mask can be provided through either a numpy array "
                "or a db path, not both"
            )
            assert self.mask_db_type is None, (
                "mask can be provided through either a numpy array "
                "or a db path, not both"
            )
            assert self.mask_blob_name is None, (
                "mask can be provided through either a numpy array "
                "or a db path, not both"
            )
            self.use_mask = True

        if self.mask_db_path is not None or self.mask_db_type is not None:
            assert self.mask_db_path is not None, (
                "when mask is provided through db, "
                "db path, db type, and blob name are all needed"
            )
            assert self.mask_db_type is not None, (
                "when mask is provided through db, "
                "db path, db type, and blob name are all needed"
            )
            assert self.mask_tensor is None, (
                "mask can be provided through either a numpy array "
                "or a db path, not both"
            )
            self.use_mask = True

        if self.prune_delays:
            assert self.prune_ratios is not None and len(self.prune_delays) == len(
                self.prune_ratios
            ), "Prune Delays and prune ratios should be of the same length"
            assert (
                self.mask_tensor is None
            ), "Mask Tensor should be None with prune ratios"
            assert (
                self.mask_db_path is None
            ), "Mask DB Path should be None with prune ratios"
            self.use_mask = True

    def _run(self, net, param_init_net, param_info):
        param = param_info.blob
        grad = param_info.grad

        if self.alpha <= 0:
            return

        self._clear_local_lr_multiplier()

        if self.lars is not None and not isinstance(grad, core.GradientSlice):
            assert (
                self.weight_decay == 0
            ), "weight decay is not implemented for LARS yet"
            assert self.lars >= 0, "Lars offset must be nonnegative, got {}".format(
                self.lars
            )
            wd, trust, lr_max = self.create_lars_inputs(
                param_init_net, 0.0, 1.0, np.finfo(np.float32).max
            )
            lr_lars_multiplier = net.Lars(
                [param, grad, wd, trust, lr_max],
                self.make_unique_blob_name(str(param) + "_lars"),
                offset=self.lars,
                lr_min=0.0,
            )

            current_scope = scope.CurrentDeviceScope()
            self._add_local_lr_multiplier(
                lr_lars_multiplier,
                is_gpu_blob=(
                    current_scope is not None
                    and core.IsGPUDeviceType(current_scope.device_type)
                ),
            )

        lr, lr_iteration = self.build_lr(
            net,
            param_init_net,
            base_learning_rate=self.alpha,
            policy=self.policy,
            **(self.init_kwargs)
        )
        iteration = (
            self.build_non_lr_iter(net, param_init_net, iter_val=0)
            if self._use_dedicated_lr_iteration_counter
            else lr_iteration
        )

        if self.counter_halflife > 0:
            self._aux_params.shared.append(iteration)

        if self.rowWise:
            logger.debug(
                "Using engine {} for rowWise Adagrad to train param {}".format(
                    self.engine, param
                )
            )

            shapes, types = workspace.InferShapesAndTypes([param_init_net])
            if str(param) not in shapes:
                # Type/shape inference is not available for this param, fallback
                # on Shape/Slice logic
                shape = param_init_net.Shape(param, str(param) + "_shape")
                num_rows = param_init_net.Slice(
                    [shape], str(shape) + "_numrows", starts=[0], ends=[1]
                )
                param_squared_sum = param_init_net.ConstantFill(
                    num_rows,
                    str(param) + "_avg_squared_sum",
                    input_as_shape=1,
                    value=0.0,
                )
            else:
                param_squared_sum = param_init_net.ConstantFill(
                    [],
                    str(param) + "_avg_squared_sum",
                    shape=[shapes[str(param)][0]],
                    value=0.0,
                )
        else:
            logger.debug(
                "Using engine {} for regular Adagrad to train param {}".format(
                    self.engine, param
                )
            )

            if self.engine in FP16_ENGINES:
                assert (
                    self.weight_decay == 0
                ), "weight decay is not tested for engine: {}".format(self.engine)

                shapes, types = workspace.InferShapesAndTypes([param_init_net])
                assert str(param) in shapes, shapes
                shape = shapes[str(param)]

                param_squared_sum = param_init_net.Float16ConstantFill(
                    [], str(param) + "_squared_sum", value=0.0, shape=shape
                )
            else:
                param_squared_sum = param_init_net.ConstantFill(
                    [param], str(param) + "_squared_sum", value=0.0
                )

        if self.use_mask is True:
            assert (
                self.weight_decay == 0
            ), "weight decay is not implemented for use_mask yet"

            if self.mask_tensor is not None:
                if not isinstance(grad, core.GradientSlice):
                    mask_blob = param_init_net.GivenTensorFill(
                        [],
                        [str(param) + "_mask"],
                        values=self.mask_tensor,
                        shape=self.mask_tensor.shape,
                    )
                else:
                    self.mask_tensor = self.mask_tensor.astype(np.uint8)
                    mask_blob = param_init_net.GivenTensorBoolFill(
                        [],
                        [str(param) + "_mask"],
                        values=self.mask_tensor,
                        shape=self.mask_tensor.shape,
                    )
                    mask_blob = param_init_net.Cast(mask_blob, to=core.DataType.UINT8)
                    mask_changed_blob = param_init_net.ConstantFill(
                        [],
                        [str(param) + "_mask_changed_blob"],
                        value=False,
                        dtype=core.DataType.BOOL,
                        shape=[1],
                    )
            elif (
                self.mask_db_path is not None or self.mask_db_type is not None
            ):  # mask is provided through a db file
                # if mask_blob_name is not given use the param name to derive mask name
                self.mask_blob_name = self.mask_blob_name or str(param) + "_mask"

                mask_blob = param_init_net.Load(
                    [],
                    self.mask_blob_name,
                    db=self.mask_db_path,
                    db_type=self.mask_db_type,
                    absolute_path=True,
                )

                if isinstance(grad, core.GradientSlice):
                    mask_changed_blob = param_init_net.ConstantFill(
                        [],
                        [str(param) + "_mask_changed_blob"],
                        value=False,
                        dtype=core.DataType.BOOL,
                        shape=[1],
                    )
            elif self.prune_delays:
                last_mask_updated_iter = param_init_net.ConstantFill(
                    [],
                    [str(param) + "_last_mask_updated_iter"],
                    value=-1,
                    dtype=core.DataType.INT64,
                    shape=[1],
                )

                if isinstance(grad, core.GradientSlice):
                    AssertionError(
                        "Prune Delays and Prune Ratios are currently not supported"
                        "for sparse operators"
                    )
                else:
                    mask_blob = param_init_net.GivenTensorFill(
                        [],
                        [str(param) + "_empty_mask"],
                        values=[],
                        dtype=core.DataType.FLOAT,
                        shape=[0],
                    )
            else:
                raise NotImplementedError(
                    "If mask is used, it needs a numpy array or a db file or"
                    "a delay iter needs to be provided"
                )

        self._aux_params.local.append(param_squared_sum)
        if self.counter_halflife > 0:
            shapes, types = workspace.InferShapesAndTypes([param_init_net])
            if str(param) not in shapes:
                shape = param_init_net.Shape(param, str(param) + "_shape")
                num_rows = param_init_net.Slice(
                    [shape], str(shape) + "_numrows", starts=[0], ends=[1]
                )
                update_counter = param_init_net.ConstantFill(
                    num_rows,
                    str(param) + "_update_counter",
                    input_as_shape=1,
                    value=0.0,
                    dtype=core.DataType.DOUBLE,
                )
                prev_update_iter = param_init_net.ConstantFill(
                    num_rows,
                    str(param) + "_prev_update_iter",
                    input_as_shape=1,
                    value=0,
                    dtype=core.DataType.INT64,
                )
            else:
                update_counter = param_init_net.ConstantFill(
                    [],
                    str(param) + "_update_counter",
                    shape=[shapes[str(param)][0]],
                    value=0.0,
                    dtype=core.DataType.DOUBLE,
                )
                prev_update_iter = param_init_net.ConstantFill(
                    [],
                    str(param) + "_prev_update_iter",
                    shape=[shapes[str(param)][0]],
                    value=0,
                    dtype=core.DataType.INT64,
                )
            self._aux_params.local.append(update_counter)
            self._aux_params.local.append(prev_update_iter)

        if self.rowWise:
            assert isinstance(grad, core.GradientSlice), (
                "If SparseAdagrad with rowWise=True, gradient must be "
                "a gradientslice. PLease ensure that rowWise is not enabled "
                "for the dense Adagrad optimizer, as it is not supported."
            )

        shapes, _ = workspace.InferShapesAndTypes([param_init_net])
        param_shape = shapes[str(param)]
        weight_decay = 0.0
        if isinstance(grad, core.GradientSlice):
            if len(param_shape) == 1:
                weight_decay = 0.0
                logger.warn(
                    "SKIPPING weight decay on 1d sparse param: {}.shape is {}".format(
                        str(param), param_shape
                    )
                )
            else:
                weight_decay = self.weight_decay
        else:
            # Skip weight decay for 1d parameters
            if len(param_shape) == 1:
                weight_decay = 0.0
                logger.warning(
                    "SKIPPING weight decay on 1d dense param: {}.shape is {}".format(
                        str(param), param_shape
                    )
                )
            else:
                weight_decay = self.weight_decay
        logger.debug(
            "weight_decay for {} (shape:{}): {}".format(
                str(param), param_shape, weight_decay
            )
        )

        if isinstance(grad, core.GradientSlice):
            assert (
                self.decay == 1.0
            ), "Decay is not implemented for SparseAdagrad and must be set to 1"
            grad = self.dedup(net, self.sparse_dedup_aggregator, grad)

            input_args = [param, param_squared_sum, grad.indices, grad.values, lr]
            output_args = [param, param_squared_sum]
            if self.rowWise:
                if self.use_mask is True:
                    op = "MaskedRowWiseSparseAdagrad"
                    assert (
                        weight_decay == 0
                    ), "weight decay is not implemented for {} yet".format(op)
                    input_args += [mask_blob, mask_changed_blob]
                else:
                    if self.counter_halflife > 0:
                        input_args += [update_counter]
                    op = "RowWiseSparseAdagrad"
            else:
                if self.use_mask is True:
                    op = "MaskedSparseAdagrad"
                    assert (
                        weight_decay == 0
                    ), "weight decay is not implemented for {} yet".format(op)
                    input_args += [mask_blob, mask_changed_blob]
                else:
                    op = "SparseAdagrad"
            logger.debug("using {} for {}".format(op, str(param)))

            if self.prune_delays:
                input_args += [iteration, last_mask_updated_iter]
                output_args += [mask_blob, last_mask_updated_iter]

            if weight_decay > 0 and self.counter_halflife == -1:
                net.__getattr__(op)(
                    input_args,
                    output_args,
                    epsilon=self.epsilon,
                    weight_decay=weight_decay,
                    engine=self.engine,
                )
            elif weight_decay > 0 and self.counter_halflife != -1:
                net.__getattr__(op)(
                    input_args,
                    output_args,
                    epsilon=self.epsilon,
                    weight_decay=weight_decay,
                    engine=self.engine,
                    counter_halflife=self.counter_halflife,
                )
            else:
                net.__getattr__(op)(
                    input_args, output_args, epsilon=self.epsilon, engine=self.engine
                )
            if self.counter_halflife > 0:
                net.RowWiseCounter(
                    [prev_update_iter, update_counter, grad.indices, iteration],
                    [prev_update_iter, update_counter],
                    counter_halflife=self.counter_halflife,
                )
        else:
            input_args = [param, param_squared_sum, grad, lr]
            output_args = [param, param_squared_sum]

            if self.output_effective_lr_and_update:
                assert (
                    self.use_mask is False
                ), "MaskedAdagrad doesn't support outputting effective_lr_and_update"
                output_args.append(str(param) + "_effective_lr")
                output_args.append(str(param) + "_update")
            elif self.output_effective_lr:
                assert (
                    self.use_mask is False
                ), "MaskedAdagrad doesn't support outputting effective_lr"
                output_args.append(str(param) + "_effective_lr")

            if self.use_mask is True:
                input_args += [mask_blob]

            if self.prune_delays:
                input_args += [iteration, last_mask_updated_iter]
                output_args += [mask_blob, last_mask_updated_iter]

            if self.use_mask:
                assert (
                    weight_decay == 0
                ), "weight decay is not implemented for use_mask yet"
                net.MaskedAdagrad(
                    input_args,
                    output_args,
                    epsilon=self.epsilon,
                    decay=float(self.decay),
                    block_size=self.prune_block_size,
                    delays=self.prune_delays,
                    prune_ratios=self.prune_ratios,
                    engine=self.engine,
                )
            else:
                if weight_decay > 0:
                    net.Adagrad(
                        input_args,
                        output_args,
                        epsilon=self.epsilon,
                        decay=float(self.decay),
                        weight_decay=weight_decay,
                        engine=self.engine,
                    )
                else:
                    net.Adagrad(
                        input_args,
                        output_args,
                        epsilon=self.epsilon,
                        decay=float(self.decay),
                        engine=self.engine,
                    )

                if self.swa_enabled:
                    param_swa = str(param) + "_swa"
                    if not param_init_net.BlobIsDefined(param_swa):
                        param_init_net.ConstantFill([param], param_swa, value=0.0)
                        self._aux_params.local.append(param_swa)

                    net.SWA(
                        [param, param_swa, iteration],
                        [param, param_swa],
                        avg_start=self.swa_avg_start_it,
                        avg_end=self.swa_avg_end_it,
                        feedback_start=self.swa_feedback_start_it,
                        feedback_step=self.swa_feedback_step,
                        feedback_end=self.swa_feedback_end_it,
                    )

        if self.ema_enabled:
            param_ema = str(param) + "_ema"
            if not param_init_net.BlobIsDefined(param_ema):
                param_init_net.ConstantFill([param], param_ema, value=0.0)
                self._aux_params.local.append(param_ema)

            net.EMA(
                [param, param_ema, iteration],
                [param, param_ema],
                ema_start=self.ema_start,
                ema_end=self.ema_end,
                ema_step=self.ema_step,
                ema_alpha=self.ema_alpha,
            )

        if self.weight_scale:
            net.WeightScale(
                [param, iteration],
                [param],
                stepsize=self.weight_scale.stepsize,
                upper_bound_iter=self.weight_scale.upper_bound_iter,
                scale=float(self.weight_scale.scale),
            )
            if self.weight_scale.to_aux:
                net.WeightScale(
                    [param_squared_sum, iteration],
                    [param_squared_sum],
                    stepsize=self.weight_scale.stepsize,
                    upper_bound_iter=self.weight_scale.upper_bound_iter,
                    scale=float(self.weight_scale.scale),
                )

    def scale_learning_rate(self, scale):
        self.alpha *= scale
        return


class WngradOptimizer(Optimizer):
    def __init__(
        self,
        alpha=1.0,
        epsilon=1e-9,
        policy="fixed",
        sparse_dedup_aggregator=None,
        engine="",
        moment_init=100.0,
        lars=None,
        output_effective_lr=False,
        output_effective_lr_and_update=False,
        **kwargs
    ):
        super(WngradOptimizer, self).__init__()
        self.alpha = alpha
        self.epsilon = epsilon
        self.policy = policy
        self.sparse_dedup_aggregator = sparse_dedup_aggregator
        self.engine = engine
        self.moment_init = moment_init
        self.lars = lars
        self.output_effective_lr = output_effective_lr
        self.output_effective_lr_and_update = output_effective_lr_and_update
        self.init_kwargs = kwargs

    def _run(self, net, param_init_net, param_info):
        param = param_info.blob
        grad = param_info.grad

        if self.alpha <= 0:
            return

        self._clear_local_lr_multiplier()

        if self.lars is not None and not isinstance(grad, core.GradientSlice):
            assert self.lars >= 0, "Lars offset must be nonnegative, got {}".format(
                self.lars
            )
            wd, trust, lr_max = self.create_lars_inputs(
                param_init_net, 0.0, 1.0, np.finfo(np.float32).max
            )
            lr_lars_multiplier = net.Lars(
                [param, grad, wd, trust, lr_max],
                self.make_unique_blob_name(str(param) + "_lars"),
                offset=self.lars,
                lr_min=0.0,
            )
            current_scope = scope.CurrentDeviceScope()
            self._add_local_lr_multiplier(
                lr_lars_multiplier,
                is_gpu_blob=(
                    current_scope is not None
                    and core.IsGPUDeviceType(current_scope.device_type)
                ),
            )

        lr, _ = self.build_lr(
            net,
            param_init_net,
            base_learning_rate=self.alpha,
            policy=self.policy,
            **(self.init_kwargs)
        )

        moment = param_init_net.ConstantFill(
            [], str(param) + "_moment", shape=[1], value=self.moment_init
        )

        self._aux_params.local.append(moment)

        if isinstance(grad, core.GradientSlice):
            grad = self.dedup(net, self.sparse_dedup_aggregator, grad)
            net.SparseWngrad(
                [param, moment, grad.indices, grad.values, lr],
                [param, moment],
                epsilon=self.epsilon,
                engine=self.engine,
            )
        else:
            output_args = [param, moment]
            if self.output_effective_lr_and_update:
                output_args.append(str(param) + "_effective_lr")
                output_args.append(str(param) + "_update")
            elif self.output_effective_lr:
                output_args.append(str(param) + "_effective_lr")

            net.Wngrad(
                [param, moment, grad, lr],
                output_args,
                epsilon=self.epsilon,
                engine=self.engine,
            )

    def scale_learning_rate(self, scale):
        self.alpha *= scale
        return


class StormOptimizer(Optimizer):
    def __init__(
        self,
        lr=0.1,
        momentum=10.0,
        beta=0.1,
        grad_sq_init=0.01,
        policy="fixed",
        sparse_dedup_aggregator=None,
        lars=None,
        **kwargs
    ):
        """Constructor function to add STORM Optimizer

        Args:
            lr: learning rate scaling (called k in the original paper)
            momentum: momentum scaling (called c in the original paper)
            beta: initial value of denominator in adaptive learning rate (
              called c in the original paper)
            grad_sq_init: initial value of gradient squared accumulator.
            policy: specifies how learning rate should be applied, options are
              'fixed', 'step', 'exp', etc.
            sparse_dedup_aggregator: specifies deduplication strategy for
              gradient slices. Works while using sparse gradients. Options
              include 'mean' and 'sum'.
            lars: lars offset.
        """
        super(StormOptimizer, self).__init__()
        self.lr = lr
        self.momentum = momentum
        self.beta = beta
        self.grad_sq_init = grad_sq_init
        self.policy = policy
        self.sparse_dedup_aggregator = sparse_dedup_aggregator
        self.lars = lars
        self.init_kwargs = kwargs

    def _run(self, net, param_init_net, param_info):
        param = param_info.blob
        grad = param_info.grad

        if self.lr <= 0:
            return

        self._clear_local_lr_multiplier()

        if self.lars is not None and not isinstance(grad, core.GradientSlice):
            assert self.lars >= 0, "Lars offset must be nonnegative, got {}".format(
                self.lars
            )
            wd, trust, lr_max = self.create_lars_inputs(
                param_init_net, 0.0, 1.0, np.finfo(np.float32).max
            )
            lr_lars_multiplier = net.Lars(
                [param, grad, wd, trust, lr_max],
                self.make_unique_blob_name(str(param) + "_lars"),
                offset=self.lars,
                lr_min=0.0,
            )
            current_scope = scope.CurrentDeviceScope()
            self._add_local_lr_multiplier(
                lr_lars_multiplier,
                is_gpu_blob=(
                    current_scope is not None
                    and core.IsGPUDeviceType(current_scope.device_type)
                ),
            )

        lr, _ = self.build_lr(
            net,
            param_init_net,
            base_learning_rate=self.lr,
            policy=self.policy,
            **(self.init_kwargs)
        )

        moment = param_init_net.ConstantFill(param, str(param) + "_moment", value=0.0)
        self._aux_params.local.append(moment)

        grad_sq_sum = param_init_net.ConstantFill(
            [], str(param) + "_grad_sq_sum", shape=[1], value=self.grad_sq_init
        )
        self._aux_params.local.append(grad_sq_sum)

        if isinstance(grad, core.GradientSlice):
            grad = self.dedup(net, self.sparse_dedup_aggregator, grad)
            net.SparseStorm(
                [param, moment, grad_sq_sum, grad.values, grad.indices, lr],
                [param, moment, grad_sq_sum],
                momentum=self.momentum,
                beta=self.beta,
            )
        else:
            net.Storm(
                [param, moment, grad_sq_sum, grad, lr],
                [param, moment, grad_sq_sum],
                momentum=self.momentum,
                beta=self.beta,
            )

    def scale_learning_rate(self, scale):
        self.lr *= scale


class AdadeltaOptimizer(Optimizer):
    def __init__(
        self,
        alpha=0.01,
        epsilon=1e-4,
        decay=0.95,
        policy="fixed",
        sparse_dedup_aggregator=None,
        engine="",
        **kwargs
    ):
        """Constructor function to add Adadelta Optimizer

        Args:
            alpha: learning rate
            epsilon: attribute of Adadelta to avoid numerical issues
            decay: attribute of Adadelta to decay the squared gradient sum
            policy: specifies how learning rate should be applied, options are
              "fixed", "step", "exp", etc.
            sparse_dedup_aggregator: specifies deduplication strategy for
              gradient slices. Works while using sparse gradients. Options
              include "mean" and "sum".
            engine: the engine used, options include "", "CUDNN", etc.
        """
        super(AdadeltaOptimizer, self).__init__()
        self.alpha = alpha
        self.epsilon = epsilon
        self.decay = decay
        self.policy = policy
        self.sparse_dedup_aggregator = sparse_dedup_aggregator
        self.engine = engine
        self.init_kwargs = kwargs

    def _run(self, net, param_init_net, param_info):
        param = param_info.blob
        grad = param_info.grad

        if self.alpha <= 0:
            return

        lr, _ = self.build_lr(
            net,
            param_init_net,
            base_learning_rate=self.alpha,
            policy=self.policy,
            **(self.init_kwargs)
        )

        moment = param_init_net.ConstantFill(
            [param], str(param) + "_squared_moment", value=0.0
        )

        moment_update = param_init_net.ConstantFill(
            [param], str(param) + "_squared_moment_update", value=0.0
        )

        self._aux_params.local.append(moment)
        self._aux_params.local.append(moment_update)

        if isinstance(grad, core.GradientSlice):
            grad = self.dedup(net, self.sparse_dedup_aggregator, grad)
            net.SparseAdadelta(
                [param, moment, moment_update, grad.indices, grad.values, lr],
                [param, moment, moment_update],
                epsilon=self.epsilon,
                decay=self.decay,
                engine=self.engine,
            )
        else:
            net.Adadelta(
                [param, moment, moment_update, grad, lr],
                [param, moment, moment_update],
                epsilon=self.epsilon,
                decay=self.decay,
                engine=self.engine,
            )

    def scale_learning_rate(self, scale):
        self.alpha *= scale
        return


class FtrlOptimizer(Optimizer):
    def __init__(
        self,
        alpha=0.01,
        beta=1e-4,
        lambda1=0,
        lambda2=0,
        sparse_dedup_aggregator=None,
        engine="",
    ):
        super(FtrlOptimizer, self).__init__()
        self.alpha = alpha
        self.beta = beta
        self.lambda1 = lambda1
        self.lambda2 = lambda2
        self.sparse_dedup_aggregator = sparse_dedup_aggregator
        self.engine = engine

    def _run(self, net, param_init_net, param_info):
        param = param_info.blob
        grad = param_info.grad

        if self.alpha <= 0:
            return

        nz = param_init_net.ConstantFill(
            [param], str(param) + "_ftrl_nz", extra_shape=[2], value=0.0
        )
        self._aux_params.local.append(nz)
        if isinstance(grad, core.GradientSlice):
            grad = self.dedup(net, self.sparse_dedup_aggregator, grad)
            net.SparseFtrl(
                [param, nz, grad.indices, grad.values],
                [param, nz],
                engine=self.engine,
                alpha=self.alpha,
                beta=self.beta,
                lambda1=self.lambda1,
                lambda2=self.lambda2,
            )
        else:
            net.Ftrl(
                [param, nz, grad],
                [param, nz],
                engine=self.engine,
                alpha=self.alpha,
                beta=self.beta,
                lambda1=self.lambda1,
                lambda2=self.lambda2,
            )

    def scale_learning_rate(self, scale):
        self.alpha *= scale
        return


class GFtrlOptimizer(Optimizer):
    """Group Lasso FTRL Optimizer."""

    def __init__(
        self,
        alpha=0.01,
        beta=1e-4,
        lambda1=0,
        lambda2=0,
        sparse_dedup_aggregator=None,
        engine="",
    ):
        super(GFtrlOptimizer, self).__init__()
        self.alpha = alpha
        self.beta = beta
        self.lambda1 = lambda1
        self.lambda2 = lambda2
        self.sparse_dedup_aggregator = sparse_dedup_aggregator
        self.engine = engine

    def _run(self, net, param_init_net, param_info):
        param = param_info.blob
        grad = param_info.grad

        if self.alpha <= 0:
            return

        nz = param_init_net.ConstantFill(
            [param], str(param) + "_gftrl_nz", extra_shape=[2], value=0.0
        )
        self._aux_params.local.append(nz)
        net.GFtrl(
            [param, nz, grad],
            [param, nz],
            engine=self.engine,
            alpha=self.alpha,
            beta=self.beta,
            lambda1=self.lambda1,
            lambda2=self.lambda2,
        )

    def scale_learning_rate(self, scale):
        self.alpha *= scale
        return


class AdamOptimizer(Optimizer):
    def __init__(
        self,
        alpha=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        policy="fixed",
        use_lr_adaption=False,
        lr_alpha=0.01,
        normalized_lr_adaption=True,
        sparse_dedup_aggregator=None,
        rowWise=False,
        engine="",
        enableRAdam=False,
        use_smart_decay=False,  # See https://fburl.com/2jdiwrhy for context.
        **kwargs
    ):
        super(AdamOptimizer, self).__init__()
        self.alpha = alpha
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.policy = policy
        self.use_lr_adaption = use_lr_adaption
        self.lr_alpha = lr_alpha
        self.normalized_lr_adaption = normalized_lr_adaption
        self.sparse_dedup_aggregator = sparse_dedup_aggregator
        self.rowWise = rowWise
        self.engine = engine
        self.enableRAdam = enableRAdam
        if use_smart_decay:
            if rowWise:
                raise NotImplementedError(('Smart decay is not implemented for rowWise Adam.  '
                                           'Set rowWise or use_smart_decay to False.'))
            if enableRAdam:
                raise NotImplementedError(('Smart decay is not implemented for RAdam.  '
                                           'Set enableRAdam or use_smart_decay to False.'))
            if use_lr_adaption:
                raise NotImplementedError(('Smart decay is not implemented with lr_adaption.  '
                                           'Set use_lr_adaption or use_smart_decay to False.'))

        self.use_smart_decay = use_smart_decay
        self.init_kwargs = kwargs

    def _run(self, net, param_init_net, param_info):
        param = param_info.blob
        grad = param_info.grad

        if self.alpha <= 0:
            return

        lr, iteration = self.build_lr(
            net,
            param_init_net,
            base_learning_rate=self.alpha,
            policy=self.policy,
            **(self.init_kwargs)
        )

        m1 = param_init_net.ConstantFill([param], param + "_first_moment", value=0.0)

        if self.rowWise:
            shapes, types = workspace.InferShapesAndTypes([param_init_net])
            m2 = param_init_net.ConstantFill(
                [], param + "_avg_second_moment", shape=[shapes[param][0]], value=0.0
            )
        else:
            m2 = param_init_net.ConstantFill(
                [param], param + "_second_moment", value=0.0
            )

        # Initialize "minibatch in which this parameter was last seen" for smart decay.
        if self.use_smart_decay:
            shapes, _ = workspace.InferShapesAndTypes([param_init_net])
            last_seen = param_init_net.ConstantFill(
                [], param + "_last_seen", shape=[shapes[param][0]], value=0, dtype=core.DataType.INT64
            )
            self._aux_params.local.append(last_seen)

        self._aux_params.shared.append(iteration)
        self._aux_params.local.append(m1)
        self._aux_params.local.append(m2)

        if self.rowWise:
            assert isinstance(grad, core.GradientSlice), (
                "If SparseAdam with rowWise=True, gradient must be "
                "a gradientslice. PLease ensure that rowWise is not enabled "
                "for the dense Adam optimizer, as it is not supported."
            )

        output_blobs = [param, m1, m2]

        if self.use_smart_decay:
            output_blobs.append(last_seen)

        if self.use_lr_adaption:
            effective_grad = str(param) + "_effective_grad"
            output_blobs.append(effective_grad)

        if isinstance(grad, core.GradientSlice):
            grad = self.dedup(net, self.sparse_dedup_aggregator, grad)
            if self.rowWise:
                op = "RowWiseSparseAdam"
            elif self.use_smart_decay:
                op = "SmartDecaySparseAdam"
            else:
                op = "SparseAdam"

            # Currently, only SparseAdam support RAdam, other Adam Ops will support later
            if op == "SparseAdam":
                net.__getattr__(op)(
                    [param, m1, m2, grad.indices, grad.values, lr, iteration],
                    output_blobs,
                    beta1=self.beta1,
                    beta2=self.beta2,
                    epsilon=self.epsilon,
                    enableRAdam=self.enableRAdam,
                )
            elif op == "SmartDecaySparseAdam":
                net.__getattr__(op)(
                    [param, m1, m2, last_seen, grad.indices, grad.values, lr, iteration],
                    output_blobs,
                    beta1=self.beta1,
                    beta2=self.beta2,
                    epsilon=self.epsilon,
                )
            else:
                assert (
                    not self.enableRAdam
                ), "Currently, RowWiseSparseAdam is not supported by RAdam!"
                net.__getattr__(op)(
                    [param, m1, m2, grad.indices, grad.values, lr, iteration],
                    output_blobs,
                    beta1=self.beta1,
                    beta2=self.beta2,
                    epsilon=self.epsilon,
                )

            if self.use_lr_adaption:
                net.LearningRateAdaption(
                    [lr, grad.values, effective_grad],
                    [lr],
                    lr_alpha=self.lr_alpha,
                    normalized_lr_adaption=self.normalized_lr_adaption,
                )

        else:
            net.Adam(
                [param, m1, m2, grad, lr, iteration],
                output_blobs,
                beta1=self.beta1,
                beta2=self.beta2,
                epsilon=self.epsilon,
            )
            if self.use_lr_adaption:
                net.LearningRateAdaption(
                    [lr, grad, effective_grad],
                    [lr],
                    lr_alpha=self.lr_alpha,
                    normalized_lr_adaption=self.normalized_lr_adaption,
                )

    def scale_learning_rate(self, scale):
        self.alpha *= scale
        return

class DecayAdagradOptimizer(Optimizer):
    def __init__(
        self,
        alpha=0.01,
        beta1=0.0,
        beta2=0.999,
        epsilon=0.1,
        weight_decay=0.0,
        ema_options=None,
        bias_correction_first=True,
        policy="fixed",
        engine="",
        **kwargs
    ):
        super(DecayAdagradOptimizer, self).__init__()
        self.alpha = alpha
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.weight_decay = weight_decay
        self.bias_correction_first = bias_correction_first
        self.policy = policy
        self.engine = engine
        self.init_kwargs = kwargs
        self._process_ema_options(ema_options)

    def _process_ema_options(self, ema_options):
        self.ema_enabled = True if ema_options else False
        if self.ema_enabled:
            self.ema_start = ema_options.get("ema_start", None)
            self.ema_end = ema_options.get("ema_end", None)
            self.ema_step = ema_options.get("ema_step", None)
            self.ema_alpha = ema_options.get("ema_alpha", None)

    def _run(self, net, param_init_net, param_info):
        param = param_info.blob
        grad = param_info.grad

        if self.alpha <= 0:
            return

        lr, iteration = self.build_lr(
            net,
            param_init_net,
            base_learning_rate=self.alpha,
            policy=self.policy,
            **(self.init_kwargs)
        )

        if isinstance(grad, core.GradientSlice):
            # hack for position weighted.
            param_squared_sum = param_init_net.ConstantFill([param], param + "_squared_sum", value=0.0)
            self._aux_params.local.append(param_squared_sum)
            output_blobs = [param, param_squared_sum]
            net.SparseAdagrad(
                [param, param_squared_sum, grad.indices, grad.values, lr],
                output_blobs,
                epsilon=self.epsilon,
            )
        else:
            m1 = param_init_net.ConstantFill([param], param + "_first_mo1ment", value=0.0)
            m2 = param_init_net.ConstantFill([param], param + "_second_moment", value=0.0)
            self._aux_params.shared.append(iteration)
            self._aux_params.local.append(m1)
            self._aux_params.local.append(m2)
            output_blobs = [param, m1, m2]
            net.DecayAdagrad(
                [param, m1, m2, grad, lr, iteration],
                output_blobs,
                beta1=self.beta1,
                beta2=self.beta2,
                epsilon=self.epsilon,
                weight_decay=self.weight_decay,
                bias_correction_first=self.bias_correction_first,
            )

            if self.ema_enabled:
                param_ema = str(param) + "_ema"
                if not param_init_net.BlobIsDefined(param_ema):
                    param_init_net.ConstantFill([param], param_ema, value=0.0)
                    self._aux_params.local.append(param_ema)

                net.EMA(
                    [param, param_ema, iteration],
                    [param, param_ema],
                    ema_start=self.ema_start,
                    ema_end=self.ema_end,
                    ema_step=self.ema_step,
                    ema_alpha=self.ema_alpha,
                )

    def scale_learning_rate(self, scale):
        self.alpha *= scale
        return

class YellowFinOptimizer(Optimizer):
    """YellowFin: An automatic tuner for momentum SGD

    See https://arxiv.org/abs/1706.03471 for more details. This implementation
    has separate learning rate and momentum per each parameter."""

    def __init__(
        self,
        alpha=0.1,
        mu=0.0,
        beta=0.999,
        curv_win_width=20,
        zero_debias=True,
        epsilon=0.1 ** 6,
        policy="fixed",
        sparse_dedup_aggregator=None,
        **kwargs
    ):
        super(YellowFinOptimizer, self).__init__()
        self.alpha = alpha
        self.mu = mu
        self.beta = beta
        self.curv_win_width = curv_win_width
        self.zero_debias = zero_debias
        self.epsilon = epsilon
        self.policy = policy
        self.sparse_dedup_aggregator = sparse_dedup_aggregator
        self.init_kwargs = kwargs

    def _run(self, net, param_init_net, param_info):

        # Note: This is number of persistent scalars in YellowFin optimizer.
        #       It should always be the number of scalars being used. The same
        #       number should be used in class for the operation.
        SCALARS_MEMORY_SIZE = 5

        param = param_info.blob
        grad = param_info.grad
        moment = param_init_net.ConstantFill([param], param + "_moment", value=0.0)
        curv_win = param_init_net.ConstantFill(
            [], param + "_curv_win", shape=[self.curv_win_width], value=0.0
        )
        g_avg = param_init_net.ConstantFill([param], param + "_g_avg", value=0.0)
        g2_avg = param_init_net.ConstantFill([param], param + "_g2_avg", value=0.0)
        lr_avg = param_init_net.ConstantFill(
            [], param + "_lr_avg", shape=[1], value=self.alpha
        )
        mu_avg = param_init_net.ConstantFill(
            [], param + "_mu_avg", shape=[1], value=self.mu
        )
        scalars_memory = param_init_net.ConstantFill(
            [], param + "_scalars_memory", shape=[SCALARS_MEMORY_SIZE], value=0.0
        )

        assert self.alpha > 0
        assert not isinstance(
            grad, core.GradientSlice
        ), "YellowFin does not support sparse gradients"

        iteration = utils.BuildUniqueMutexIter(param_init_net, net, iter_val=0)

        self._aux_params.shared.append(iteration)
        self._aux_params.local.append(moment)
        self._aux_params.local.append(lr_avg)
        self._aux_params.local.append(mu_avg)
        self._aux_params.local.append(curv_win)
        self._aux_params.local.append(g_avg)
        self._aux_params.local.append(g2_avg)
        self._aux_params.local.append(scalars_memory)

        yf_in_out_args = [
            param,
            moment,
            lr_avg,
            mu_avg,
            curv_win,
            g_avg,
            g2_avg,
            scalars_memory,
        ]

        net.YellowFin(
            yf_in_out_args + [grad, iteration],
            yf_in_out_args,
            beta=self.beta,
            epsilon=self.epsilon,
            curv_win_width=self.curv_win_width,
            zero_debias=self.zero_debias,
        )

    def scale_learning_rate(self, scale):
        self.alpha *= scale
        return


class RmsPropOptimizer(Optimizer):
    def __init__(
        self,
        alpha=0.01,
        decay=0.9,
        momentum=0.0,
        epsilon=1e-5,
        policy="fixed",
        engine="",
        **kwargs
    ):
        super(RmsPropOptimizer, self).__init__()
        self.alpha = alpha
        self.decay = decay
        self.momentum = momentum
        self.epsilon = epsilon
        self.policy = policy
        self.engine = engine
        self.init_kwargs = kwargs

    def _run(self, net, param_init_net, param_info):
        param = param_info.blob
        grad = param_info.grad

        assert self.alpha > 0
        assert not isinstance(
            grad, core.GradientSlice
        ), "RmsPropOptimizer doesn't support sparse gradients"

        dev = scope.CurrentDeviceScope()
        if dev is None:
            dev = core.DeviceOption(caffe2_pb2.CPU)

        ONE = param_init_net.ConstantFill(
            [], "ONE_{}_{}".format(dev.device_type, dev.device_id), shape=[1], value=1.0
        )

        lr, _ = self.build_lr(
            net,
            param_init_net,
            base_learning_rate=-self.alpha,
            policy=self.policy,
            **(self.init_kwargs)
        )

        grad_o = param_init_net.ConstantFill(
            [param], str(param) + "_grad_o", values=0.0
        )

        ms = param_init_net.ConstantFill(
            [param], str(param) + "_mean_squares", values=0.0
        )

        mom = param_init_net.ConstantFill([param], str(param) + "_momentum", values=0.0)

        self._aux_params.local.append(ms)
        self._aux_params.local.append(mom)

        net.RmsProp(
            [grad, ms, mom, ONE],
            [grad_o, ms, mom],
            decay=self.decay,
            momentum=self.momentum,
            epsilon=self.epsilon,
            engine=self.engine,
        )

        net.MomentumSGDUpdate([grad_o, mom, lr, param], [grad_o, mom, param])

    def scale_learning_rate(self, scale):
        self.alpha *= scale
        return


def _get_param_to_device(model):
    # Infer blob devices by going through the net and param_init_net
    # ops and observing the device used to create or use the blob.
    param_to_device = core.InferBlobDevices(model.net)
    param_to_device.update(core.InferBlobDevices(model.param_init_net))
    return param_to_device


def get_param_device(param_name, grad, param_to_device=None, default_device=None):
    device = default_device
    param_to_device = param_to_device or {}
    # We first check if parameter's device has been inferred. If not,
    # we check the gradient. This can happen if parameter is not output
    # by any blob but created by a FetchBlob.
    if param_name in param_to_device:
        device = param_to_device[param_name]
    else:
        if isinstance(grad, core.GradientSlice):
            grad = grad
            if str(grad.values) in param_to_device:
                device = param_to_device[str(grad.values)]
            elif str(grad.indices) in param_to_device:
                device = param_to_device[str(grad.indices)]
        else:
            grad_name = str(grad)
            if grad_name in param_to_device:
                device = param_to_device[grad_name]

    assert device is not None, "Cannot infer device for {}: no op creates it".format(
        param_name
    )
    return device


def get_lr_injection():
    """
    Gets current value for lr_injection, a multiplier for all base
    learning rates.
    Must set allow_lr_injection=True when building optimizer, as it
    relies on synchronization over CPU.
    """
    return workspace.FetchBlob(_LEARNING_RATE_INJECTION)


def set_lr_injection(lr_injection_value):
    """
    Sets lr_injection, a multiplier for all base learning rates.
    Must set allow_lr_injection=True when building optimizer, as it
    relies on synchronization over CPU.
    """
    workspace.FeedBlob(
        _LEARNING_RATE_INJECTION,
        np.array([float(lr_injection_value)], dtype=np.float32),
    )


def _calc_norm_ratio(model, params, name_scope, param_to_device, max_gradient_norm):
    with core.NameScope(name_scope):
        grad_squared_sums = []
        for i, param in enumerate(params):
            device = get_param_device(str(param.blob), param.grad, param_to_device)

            with core.DeviceScope(device):
                grad = (
                    param.grad
                    if not isinstance(param.grad, core.GradientSlice)
                    else param.grad.values
                )

                grad_squared_sum_name = "grad_{}_squared_sum".format(i)
                grad_squared_sum = model.net.SumSqrElements(grad, grad_squared_sum_name)
                grad_squared_sum_cpu = model.net.EnsureCPUOutput(grad_squared_sum)
                grad_squared_sums.append(grad_squared_sum_cpu)

        with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
            grad_squared_full_sum = model.net.Sum(
                grad_squared_sums, "grad_squared_full_sum"
            )
            global_norm = model.net.Pow(
                grad_squared_full_sum, "global_norm", exponent=0.5
            )
            clip_norm = model.param_init_net.ConstantFill(
                [], "clip_norm", shape=[], value=float(max_gradient_norm)
            )
            max_norm = model.net.Max([global_norm, clip_norm], "max_norm")
            norm_ratio = model.net.Div([clip_norm, max_norm], "norm_ratio")
            return norm_ratio


def _build(
    model,
    optimizer,
    weights_only=False,
    use_param_info_optim=True,
    max_gradient_norm=None,
    allow_lr_injection=False,
):
    param_to_device = _get_param_to_device(model)

    # Validate there are no duplicate params
    model.Validate()

    params = []
    for param_info in model.GetOptimizationParamInfo():
        if weights_only and param_info.blob not in model.weights:
            continue
        params.append(param_info)

    lr_multiplier = None
    if max_gradient_norm is not None:
        lr_multiplier = _calc_norm_ratio(
            model,
            params,
            "norm_clipped_grad_update",
            param_to_device,
            max_gradient_norm,
        )

    if allow_lr_injection:
        if not model.net.BlobIsDefined(_LEARNING_RATE_INJECTION):
            lr_injection = model.param_init_net.ConstantFill(
                [], _LEARNING_RATE_INJECTION, shape=[1], value=1.0
            )
        else:
            lr_injection = _LEARNING_RATE_INJECTION

        if lr_multiplier is None:
            lr_multiplier = lr_injection
        else:
            lr_multiplier = model.net.Mul(
                [lr_multiplier, lr_injection], "lr_multiplier", broadcast=1
            )
    optimizer.add_lr_multiplier(lr_multiplier)

    for param_info in params:
        param_name = str(param_info.blob)
        device = get_param_device(param_name, param_info.grad, param_to_device)
        with core.DeviceScope(device):
            if param_info.optimizer and use_param_info_optim:
                param_info.optimizer(model.net, model.param_init_net, param_info)
            else:
                optimizer(model.net, model.param_init_net, param_info)
    return optimizer


def add_weight_decay(model, weight_decay):
    """Adds a decay to weights in the model.

    This is a form of L2 regularization.

    Args:
        weight_decay: strength of the regularization
    """
    _build(
        model,
        WeightDecayBuilder(weight_decay=weight_decay),
        weights_only=True,
        use_param_info_optim=False,
    )


def build_sgd(
    model,
    base_learning_rate,
    max_gradient_norm=None,
    allow_lr_injection=False,
    **kwargs
):
    sgd_optimizer = SgdOptimizer(base_learning_rate, **kwargs)
    return _build(
        model,
        sgd_optimizer,
        max_gradient_norm=max_gradient_norm,
        allow_lr_injection=allow_lr_injection,
    )


def build_multi_precision_sgd(
    model,
    base_learning_rate,
    max_gradient_norm=None,
    allow_lr_injection=False,
    **kwargs
):
    multi_prec_sgd_optimizer = MultiPrecisionSgdOptimizer(base_learning_rate, **kwargs)
    return _build(
        model,
        multi_prec_sgd_optimizer,
        max_gradient_norm=max_gradient_norm,
        allow_lr_injection=allow_lr_injection,
    )


def build_fp16_sgd(model, base_learning_rate, **kwargs):
    fp16_sgd_optimizer = FP16SgdOptimizer(base_learning_rate, **kwargs)
    return _build(model, fp16_sgd_optimizer)


def build_ftrl(model, engine="SIMD", **kwargs):
    if engine == "SIMD":
        assert core.IsOperator("Ftrl_ENGINE_SIMD")
        assert core.IsOperator("SparseFtrl_ENGINE_SIMD")
    ftrl_optimizer = FtrlOptimizer(engine=engine, **kwargs)
    return _build(model, ftrl_optimizer)


def build_gftrl(model, engine="", **kwargs):
    if engine == "SIMD":
        assert core.IsOperator("GFtrl_ENGINE_SIMD")
    gftrl_optimizer = GFtrlOptimizer(engine=engine, **kwargs)
    return _build(model, gftrl_optimizer)


def build_adagrad(
    model,
    base_learning_rate,
    parameters=None,
    max_gradient_norm=None,
    allow_lr_injection=False,
    **kwargs
):
    adagrad_optimizer = AdagradOptimizer(alpha=base_learning_rate, **kwargs)
    return _build(
        model,
        adagrad_optimizer,
        max_gradient_norm=max_gradient_norm,
        allow_lr_injection=allow_lr_injection,
    )


def build_wngrad(
    model,
    base_learning_rate,
    parameters=None,
    max_gradient_norm=None,
    allow_lr_injection=False,
    **kwargs
):
    wngrad_optimizer = WngradOptimizer(alpha=base_learning_rate, **kwargs)
    return _build(
        model,
        wngrad_optimizer,
        max_gradient_norm=max_gradient_norm,
        allow_lr_injection=allow_lr_injection,
    )


def build_storm(
    model,
    base_learning_rate,
    parameters=None,
    max_gradient_norm=None,
    allow_lr_injection=False,
    **kwargs
):
    storm_optimizer = StormOptimizer(lr=base_learning_rate, **kwargs)
    return _build(
        model,
        storm_optimizer,
        max_gradient_norm=max_gradient_norm,
        allow_lr_injection=allow_lr_injection,
    )


def build_adadelta(
    model,
    base_learning_rate,
    parameters=None,
    max_gradient_norm=None,
    allow_lr_injection=False,
    **kwargs
):
    adadelta_optimizer = AdadeltaOptimizer(alpha=base_learning_rate, **kwargs)
    return _build(
        model,
        adadelta_optimizer,
        max_gradient_norm=max_gradient_norm,
        allow_lr_injection=allow_lr_injection,
    )


def build_adam(
    model,
    base_learning_rate,
    max_gradient_norm=None,
    allow_lr_injection=False,
    **kwargs
):
    adam_optimizer = AdamOptimizer(alpha=base_learning_rate, **kwargs)
    return _build(
        model,
        adam_optimizer,
        max_gradient_norm=max_gradient_norm,
        allow_lr_injection=allow_lr_injection,
    )

def build_decay_adagrad(
    model,
    base_learning_rate,
    max_gradient_norm=None,
    allow_lr_injection=False,
    **kwargs
):
    decay_adagrad_optimizer = DecayAdagradOptimizer(alpha=base_learning_rate, **kwargs)
    return _build(
        model,
        decay_adagrad_optimizer,
        max_gradient_norm=max_gradient_norm,
        allow_lr_injection=allow_lr_injection,
    )

def build_yellowfin(model, base_learning_rate=0.1, **kwargs):
    yellowfin_optimizer = YellowFinOptimizer(alpha=base_learning_rate, **kwargs)
    return _build(model, yellowfin_optimizer)


def build_rms_prop(
    model,
    base_learning_rate,
    max_gradient_norm=None,
    allow_lr_injection=False,
    **kwargs
):
    rms_prop_optimizer = RmsPropOptimizer(alpha=base_learning_rate, **kwargs)
    return _build(
        model,
        rms_prop_optimizer,
        max_gradient_norm=max_gradient_norm,
        allow_lr_injection=allow_lr_injection,
    )