1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
# @package parallel_workers
# Module caffe2.python.parallel_workers
'''
This module provides a python-land multithreaded mechanism for executing work.
Basic usage is as follows:
coordinator = parallel_workers.init_workers(
my_worker_fun,
worker_name="train"
)
...
coordinator.start()
First argument is the function to run in a loop on potentially multiple threads.
It has the call signature
worker_fun(worker_id)
Argument 'worker_name' is used to distinguish different workers,
such as workers processing train data or workers processing test data.
Optionally, one can define an "init function" that is called once before
threads start, and has call signature:
my_init_fun(worker_coordinator, global_coordinator)
Note that for data_parallel_models, init_workers will be called
for each GPU. Note that the 'coordinator' returned by the function is same
each time.
'''
import logging
import threading
import atexit
import time
import collections
import traceback
from abc import ABCMeta, abstractmethod
log = logging.getLogger("parallel_workers")
log.setLevel(logging.INFO)
LOG_INT_SECS = 60
def init_workers(
worker_fun,
num_worker_threads=2,
worker_name="train",
init_fun=None,
external_loggers=None,
shutdown_fun=None,
):
global global_coordinator
metrics = Metrics(external_loggers)
worker_ids = [
global_coordinator.get_new_worker_id()
for i in range(num_worker_threads)
]
# Create coordinator object
coordinator = WorkerCoordinator(
worker_name, worker_ids, init_fun, shutdown_fun=shutdown_fun)
# Launch fetch worker threads
workers = [
threading.Thread(
target=run_worker,
name="parallel_workers worker id {}".format(worker_id),
args=[coordinator,
Worker(coordinator, worker_id, worker_fun, metrics)],
) for worker_id in worker_ids
]
coordinator._workers = workers
global_coordinator.add(coordinator)
return global_coordinator
class Metrics(object):
def __init__(self, external_loggers):
self._metrics = collections.defaultdict(lambda: 0)
self._external_loggers = external_loggers
def reset_metrics(self):
self._metrics = collections.defaultdict(lambda: 0)
def log_metrics(self):
if not self._external_loggers:
return
for logger in self._external_loggers:
try:
logger.log(self._metrics)
except Exception as e:
print("Failed to call ExternalLogger: {}".format(e))
def put_metric(self, key, value, count=True):
self._metrics[key] += value
if count:
count_key = '{}_count'.format(key)
self._metrics[count_key] += 1
class State():
__metaclass__ = ABCMeta
@abstractmethod
def start(self):
pass
@abstractmethod
def stop(self):
pass
@abstractmethod
def cleanup(self):
pass
class WorkerCoordinator(object):
def __init__(
self, worker_name, worker_ids, init_fun,
state=None, shutdown_fun=None
):
self._active = True
self._started = False
self._workers = []
self._worker_name = worker_name
self._worker_ids = worker_ids
self._init_fun = init_fun
self._state = state
self._shutdown_fun = shutdown_fun
def is_active(self):
return self._active
def init(self, global_coordinator):
if self._init_fun and not self._started:
data_coordinator = self
self._init_fun(data_coordinator, global_coordinator)
def _start(self):
if self._started:
return
self._active = True
self._started = True
if self._state:
self._state.start()
for w in self._workers:
w.daemon = True
w.start()
def _stop(self, reason=None):
self._active = False
if reason is not None:
log.error("Data input failed due to an error: {}".format(reason))
if self._shutdown_fun and self._started:
self._shutdown_fun()
if self._state:
self._state.stop()
self._started = False
def _wait_finish(self, cleanup=None):
print("Wait for workers to die: {}".format(self._worker_name))
for w in self._workers:
if w != threading.current_thread():
w.join(5.0) # don't wait forever, thread may be blocked in i/o
success = True
for w in self._workers:
if w.is_alive():
print("Worker {} failed to close while waiting".format(w))
success = False
# Release memory for the scratch blobs
if success and self._state:
self._state.cleanup()
print("All workers terminated: {}".format(success))
return success
def get_worker_ids(self):
return self._worker_ids
class GlobalWorkerCoordinator(object):
def __init__(self):
self._coordinators = []
self._fetcher_id_seq = 0
self._worker_ids = []
self.register_shutdown_handler()
def add(self, coordinator):
self._coordinators.append(coordinator)
def get_new_worker_id(self):
worker_id = self._fetcher_id_seq
self._worker_ids.append(worker_id)
self._fetcher_id_seq += 1
return worker_id
def get_worker_ids(self):
return self._worker_ids
def start(self):
# run init and start in separate for loop to
# ensure init happens serially before threads are spawn.
for c in self._coordinators:
c.init(self)
for c in self._coordinators:
c._start()
def stop(self):
all_success = True
for c in self._coordinators:
c._stop()
for c in self._coordinators:
success = c._wait_finish()
all_success = all_success and success
self._coordinators = []
return all_success
def stop_coordinator(self, worker_name):
'''
Stop a specific coordinator
'''
for c in self._coordinators:
if c._worker_name == worker_name:
c._stop()
c._wait_finish()
self._coordinators = [
c for c in self._coordinators
if c._worker_name != worker_name
]
def register_shutdown_handler(self):
def cleanup():
self.stop()
atexit.register(cleanup)
class Worker(object):
def __init__(
self,
coordinator,
worker_id,
worker_fun=None,
metrics=None
):
self._coordinator = coordinator
self._worker_id = worker_id
self._worker_fun = worker_fun
self._metrics = metrics
def start(self):
self._start_time = time.time()
def run(self):
self._worker_fun(self._worker_id)
def handle_exception(self, e):
traceback.print_exc()
logging.exception("Exception in worker", e)
self._coordinator._stop("Exception in worker {}: {}".format(
self._worker_id, e
))
def finish(self):
self._metrics.put_metric(
'worker_time', time.time() - self._start_time)
self._metrics.log_metrics()
global_coordinator = GlobalWorkerCoordinator()
def run_worker(coordinator, worker):
while coordinator.is_active():
worker.start()
try:
worker.run()
except Exception as e:
worker.handle_exception(e)
finally:
worker.finish()
|