1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
from caffe2.python.test_util import TestCase
from caffe2.python import workspace, brew
from caffe2.python.model_helper import ModelHelper
from caffe2.python.predictor import mobile_exporter
import numpy as np
class TestMobileExporter(TestCase):
def test_mobile_exporter(self):
model = ModelHelper(name="mobile_exporter_test_model")
# Test LeNet
brew.conv(model, 'data', 'conv1', dim_in=1, dim_out=20, kernel=5)
brew.max_pool(model, 'conv1', 'pool1', kernel=2, stride=2)
brew.conv(model, 'pool1', 'conv2', dim_in=20, dim_out=50, kernel=5)
brew.max_pool(model, 'conv2', 'pool2', kernel=2, stride=2)
brew.fc(model, 'pool2', 'fc3', dim_in=50 * 4 * 4, dim_out=500)
brew.relu(model, 'fc3', 'fc3')
brew.fc(model, 'fc3', 'pred', 500, 10)
brew.softmax(model, 'pred', 'out')
# Create our mobile exportable networks
workspace.RunNetOnce(model.param_init_net)
init_net, predict_net = mobile_exporter.Export(
workspace, model.net, model.params
)
# Populate the workspace with data
np_data = np.random.rand(1, 1, 28, 28).astype(np.float32)
workspace.FeedBlob("data", np_data)
workspace.CreateNet(model.net)
workspace.RunNet(model.net)
ref_out = workspace.FetchBlob("out")
# Clear the workspace
workspace.ResetWorkspace()
# Populate the workspace with data
workspace.RunNetOnce(init_net)
# Fake "data" is populated by init_net, we have to replace it
workspace.FeedBlob("data", np_data)
# Overwrite the old net
workspace.CreateNet(predict_net, True)
workspace.RunNet(predict_net.name)
manual_run_out = workspace.FetchBlob("out")
np.testing.assert_allclose(
ref_out, manual_run_out, atol=1e-10, rtol=1e-10
)
# Clear the workspace
workspace.ResetWorkspace()
# Predictor interface test (simulates writing to disk)
predictor = workspace.Predictor(
init_net.SerializeToString(), predict_net.SerializeToString()
)
# Output is a vector of outputs but we only care about the first and only result
predictor_out = predictor.run([np_data])
assert len(predictor_out) == 1
predictor_out = predictor_out[0]
np.testing.assert_allclose(
ref_out, predictor_out, atol=1e-10, rtol=1e-10
)
def test_mobile_exporter_datatypes(self):
model = ModelHelper(name="mobile_exporter_test_model")
model.Copy("data_int", "out")
model.params.append("data_int")
model.Copy("data_obj", "out_obj")
model.params.append("data_obj")
# Create our mobile exportable networks
workspace.RunNetOnce(model.param_init_net)
np_data_int = np.random.randint(100, size=(1, 1, 28, 28), dtype=np.int32)
workspace.FeedBlob("data_int", np_data_int)
np_data_obj = np.array(['aa', 'bb']).astype(np.dtype('O'))
workspace.FeedBlob("data_obj", np_data_obj)
init_net, predict_net = mobile_exporter.Export(
workspace, model.net, model.params
)
workspace.CreateNet(model.net)
workspace.RunNet(model.net)
ref_out = workspace.FetchBlob("out")
ref_out_obj = workspace.FetchBlob("out_obj")
# Clear the workspace
workspace.ResetWorkspace()
# Populate the workspace with data
workspace.RunNetOnce(init_net)
# Overwrite the old net
workspace.CreateNet(predict_net, True)
workspace.RunNet(predict_net.name)
manual_run_out = workspace.FetchBlob("out")
manual_run_out_obj = workspace.FetchBlob("out_obj")
np.testing.assert_allclose(
ref_out, manual_run_out, atol=1e-10, rtol=1e-10
)
np.testing.assert_equal(ref_out_obj, manual_run_out_obj)
# Clear the workspace
workspace.ResetWorkspace()
# Predictor interface test (simulates writing to disk)
predictor = workspace.Predictor(
init_net.SerializeToString(), predict_net.SerializeToString()
)
# Output is a vector of outputs.
predictor_out = predictor.run([])
assert len(predictor_out) == 2
predictor_out_int = predictor_out[1]
predictor_out_obj = predictor_out[0]
# The order in predictor_out is non-deterministic. Use type of the entry
# to figure out what to compare it to.
if isinstance(predictor_out[1][0], bytes):
predictor_out_int = predictor_out[0]
predictor_out_obj = predictor_out[1]
np.testing.assert_allclose(
ref_out, predictor_out_int, atol=1e-10, rtol=1e-10
)
np.testing.assert_equal(ref_out_obj, predictor_out_obj)
|