1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
import tempfile
import unittest
import numpy as np
from caffe2.python import cnn, workspace, core
from future.utils import viewitems
from caffe2.python.predictor_constants import predictor_constants as pc
import caffe2.python.predictor.predictor_exporter as pe
import caffe2.python.predictor.predictor_py_utils as pred_utils
from caffe2.proto import caffe2_pb2, metanet_pb2
class MetaNetDefTest(unittest.TestCase):
def test_minimal(self):
'''
Tests that a NetsMap message can be created with a NetDef message
'''
# This calls the constructor for a metanet_pb2.NetsMap
metanet_pb2.NetsMap(key="test_key", value=caffe2_pb2.NetDef())
def test_adding_net(self):
'''
Tests that NetDefs can be added to MetaNetDefs
'''
meta_net_def = metanet_pb2.MetaNetDef()
net_def = caffe2_pb2.NetDef()
meta_net_def.nets.add(key="test_key", value=net_def)
def test_replace_blobs(self):
'''
Tests that NetDefs can be added to MetaNetDefs
'''
meta_net_def = metanet_pb2.MetaNetDef()
blob_name = "Test"
blob_def = ["AA"]
blob_def2 = ["BB"]
replaced_blob_def = ["CC"]
pred_utils.AddBlobs(meta_net_def, blob_name, blob_def)
self.assertEqual(blob_def, pred_utils.GetBlobs(meta_net_def, blob_name))
pred_utils.AddBlobs(meta_net_def, blob_name, blob_def2)
self.assertEqual(blob_def + blob_def2, pred_utils.GetBlobs(meta_net_def, blob_name))
pred_utils.ReplaceBlobs(meta_net_def, blob_name, replaced_blob_def)
self.assertEqual(replaced_blob_def, pred_utils.GetBlobs(meta_net_def, blob_name))
class PredictorExporterTest(unittest.TestCase):
def _create_model(self):
m = cnn.CNNModelHelper()
m.FC("data", "y",
dim_in=5, dim_out=10,
weight_init=m.XavierInit,
bias_init=m.XavierInit)
return m
def setUp(self):
np.random.seed(1)
m = self._create_model()
self.predictor_export_meta = pe.PredictorExportMeta(
predict_net=m.net.Proto(),
parameters=[str(b) for b in m.params],
inputs=["data"],
outputs=["y"],
shapes={"y": (1, 10), "data": (1, 5)},
)
workspace.RunNetOnce(m.param_init_net)
self.params = {
param: workspace.FetchBlob(param)
for param in self.predictor_export_meta.parameters}
# Reset the workspace, to ensure net creation proceeds as expected.
workspace.ResetWorkspace()
def test_meta_constructor(self):
'''
Test that passing net itself instead of proto works
'''
m = self._create_model()
pe.PredictorExportMeta(
predict_net=m.net,
parameters=m.params,
inputs=["data"],
outputs=["y"],
shapes={"y": (1, 10), "data": (1, 5)},
)
def test_param_intersection(self):
'''
Test that passes intersecting parameters and input/output blobs
'''
m = self._create_model()
with self.assertRaises(Exception):
pe.PredictorExportMeta(
predict_net=m.net,
parameters=m.params,
inputs=["data"] + m.params,
outputs=["y"],
shapes={"y": (1, 10), "data": (1, 5)},
)
with self.assertRaises(Exception):
pe.PredictorExportMeta(
predict_net=m.net,
parameters=m.params,
inputs=["data"],
outputs=["y"] + m.params,
shapes={"y": (1, 10), "data": (1, 5)},
)
def test_meta_net_def_net_runs(self):
for param, value in viewitems(self.params):
workspace.FeedBlob(param, value)
extra_init_net = core.Net('extra_init')
extra_init_net.ConstantFill('data', 'data', value=1.0)
global_init_net = core.Net('global_init')
global_init_net.ConstantFill(
[],
'global_init_blob',
value=1.0,
shape=[1, 5],
dtype=core.DataType.FLOAT
)
pem = pe.PredictorExportMeta(
predict_net=self.predictor_export_meta.predict_net,
parameters=self.predictor_export_meta.parameters,
inputs=self.predictor_export_meta.inputs,
outputs=self.predictor_export_meta.outputs,
shapes=self.predictor_export_meta.shapes,
extra_init_net=extra_init_net,
global_init_net=global_init_net,
net_type='dag',
)
db_type = 'minidb'
db_file = tempfile.NamedTemporaryFile(
delete=False, suffix=".{}".format(db_type))
pe.save_to_db(
db_type=db_type,
db_destination=db_file.name,
predictor_export_meta=pem)
workspace.ResetWorkspace()
meta_net_def = pe.load_from_db(
db_type=db_type,
filename=db_file.name,
)
self.assertTrue("data" not in workspace.Blobs())
self.assertTrue("y" not in workspace.Blobs())
init_net = pred_utils.GetNet(meta_net_def, pc.PREDICT_INIT_NET_TYPE)
# 0-fills externalblobs blobs and runs extra_init_net
workspace.RunNetOnce(init_net)
self.assertTrue("data" in workspace.Blobs())
self.assertTrue("y" in workspace.Blobs())
print(workspace.FetchBlob("data"))
np.testing.assert_array_equal(
workspace.FetchBlob("data"), np.ones(shape=(1, 5)))
np.testing.assert_array_equal(
workspace.FetchBlob("y"), np.zeros(shape=(1, 10)))
self.assertTrue("global_init_blob" not in workspace.Blobs())
# Load parameters from DB
global_init_net = pred_utils.GetNet(meta_net_def,
pc.GLOBAL_INIT_NET_TYPE)
workspace.RunNetOnce(global_init_net)
# make sure the extra global_init_net is running
self.assertTrue(workspace.HasBlob('global_init_blob'))
np.testing.assert_array_equal(
workspace.FetchBlob("global_init_blob"), np.ones(shape=(1, 5)))
# Run the net with a reshaped input and verify we are
# producing good numbers (with our custom implementation)
workspace.FeedBlob("data", np.random.randn(2, 5).astype(np.float32))
predict_net = pred_utils.GetNet(meta_net_def, pc.PREDICT_NET_TYPE)
self.assertEqual(predict_net.type, 'dag')
workspace.RunNetOnce(predict_net)
np.testing.assert_array_almost_equal(
workspace.FetchBlob("y"),
workspace.FetchBlob("data").dot(self.params["y_w"].T) +
self.params["y_b"])
def test_load_device_scope(self):
for param, value in self.params.items():
workspace.FeedBlob(param, value)
pem = pe.PredictorExportMeta(
predict_net=self.predictor_export_meta.predict_net,
parameters=self.predictor_export_meta.parameters,
inputs=self.predictor_export_meta.inputs,
outputs=self.predictor_export_meta.outputs,
shapes=self.predictor_export_meta.shapes,
net_type='dag',
)
db_type = 'minidb'
db_file = tempfile.NamedTemporaryFile(
delete=False, suffix=".{}".format(db_type))
pe.save_to_db(
db_type=db_type,
db_destination=db_file.name,
predictor_export_meta=pem)
workspace.ResetWorkspace()
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 1)):
meta_net_def = pe.load_from_db(
db_type=db_type,
filename=db_file.name,
)
init_net = core.Net(pred_utils.GetNet(meta_net_def,
pc.GLOBAL_INIT_NET_TYPE))
predict_init_net = core.Net(pred_utils.GetNet(
meta_net_def, pc.PREDICT_INIT_NET_TYPE))
# check device options
for op in list(init_net.Proto().op) + list(predict_init_net.Proto().op):
self.assertEqual(1, op.device_option.device_id)
self.assertEqual(caffe2_pb2.CPU, op.device_option.device_type)
def test_db_fails_without_params(self):
with self.assertRaises(Exception):
for db_type in ["minidb"]:
db_file = tempfile.NamedTemporaryFile(
delete=False, suffix=".{}".format(db_type))
pe.save_to_db(
db_type=db_type,
db_destination=db_file.name,
predictor_export_meta=self.predictor_export_meta)
|