File: predictor_exporter_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (241 lines) | stat: -rw-r--r-- 8,693 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241





import tempfile
import unittest
import numpy as np
from caffe2.python import cnn, workspace, core
from future.utils import viewitems

from caffe2.python.predictor_constants import predictor_constants as pc
import caffe2.python.predictor.predictor_exporter as pe
import caffe2.python.predictor.predictor_py_utils as pred_utils
from caffe2.proto import caffe2_pb2, metanet_pb2


class MetaNetDefTest(unittest.TestCase):
    def test_minimal(self):
        '''
        Tests that a NetsMap message can be created with a NetDef message
        '''
        # This calls the constructor for a metanet_pb2.NetsMap
        metanet_pb2.NetsMap(key="test_key", value=caffe2_pb2.NetDef())

    def test_adding_net(self):
        '''
        Tests that NetDefs can be added to MetaNetDefs
        '''
        meta_net_def = metanet_pb2.MetaNetDef()
        net_def = caffe2_pb2.NetDef()
        meta_net_def.nets.add(key="test_key", value=net_def)

    def test_replace_blobs(self):
        '''
        Tests that NetDefs can be added to MetaNetDefs
        '''
        meta_net_def = metanet_pb2.MetaNetDef()
        blob_name = "Test"
        blob_def = ["AA"]
        blob_def2 = ["BB"]
        replaced_blob_def = ["CC"]
        pred_utils.AddBlobs(meta_net_def, blob_name, blob_def)
        self.assertEqual(blob_def, pred_utils.GetBlobs(meta_net_def, blob_name))
        pred_utils.AddBlobs(meta_net_def, blob_name, blob_def2)
        self.assertEqual(blob_def + blob_def2, pred_utils.GetBlobs(meta_net_def, blob_name))

        pred_utils.ReplaceBlobs(meta_net_def, blob_name, replaced_blob_def)
        self.assertEqual(replaced_blob_def, pred_utils.GetBlobs(meta_net_def, blob_name))


class PredictorExporterTest(unittest.TestCase):
    def _create_model(self):
        m = cnn.CNNModelHelper()
        m.FC("data", "y",
             dim_in=5, dim_out=10,
             weight_init=m.XavierInit,
             bias_init=m.XavierInit)
        return m

    def setUp(self):
        np.random.seed(1)
        m = self._create_model()

        self.predictor_export_meta = pe.PredictorExportMeta(
            predict_net=m.net.Proto(),
            parameters=[str(b) for b in m.params],
            inputs=["data"],
            outputs=["y"],
            shapes={"y": (1, 10), "data": (1, 5)},
        )
        workspace.RunNetOnce(m.param_init_net)

        self.params = {
            param: workspace.FetchBlob(param)
            for param in self.predictor_export_meta.parameters}
        # Reset the workspace, to ensure net creation proceeds as expected.
        workspace.ResetWorkspace()

    def test_meta_constructor(self):
        '''
        Test that passing net itself instead of proto works
        '''
        m = self._create_model()
        pe.PredictorExportMeta(
            predict_net=m.net,
            parameters=m.params,
            inputs=["data"],
            outputs=["y"],
            shapes={"y": (1, 10), "data": (1, 5)},
        )

    def test_param_intersection(self):
        '''
        Test that passes intersecting parameters and input/output blobs
        '''
        m = self._create_model()
        with self.assertRaises(Exception):
            pe.PredictorExportMeta(
                predict_net=m.net,
                parameters=m.params,
                inputs=["data"] + m.params,
                outputs=["y"],
                shapes={"y": (1, 10), "data": (1, 5)},
            )
        with self.assertRaises(Exception):
            pe.PredictorExportMeta(
                predict_net=m.net,
                parameters=m.params,
                inputs=["data"],
                outputs=["y"] + m.params,
                shapes={"y": (1, 10), "data": (1, 5)},
            )

    def test_meta_net_def_net_runs(self):
        for param, value in viewitems(self.params):
            workspace.FeedBlob(param, value)

        extra_init_net = core.Net('extra_init')
        extra_init_net.ConstantFill('data', 'data', value=1.0)

        global_init_net = core.Net('global_init')
        global_init_net.ConstantFill(
            [],
            'global_init_blob',
            value=1.0,
            shape=[1, 5],
            dtype=core.DataType.FLOAT
        )
        pem = pe.PredictorExportMeta(
            predict_net=self.predictor_export_meta.predict_net,
            parameters=self.predictor_export_meta.parameters,
            inputs=self.predictor_export_meta.inputs,
            outputs=self.predictor_export_meta.outputs,
            shapes=self.predictor_export_meta.shapes,
            extra_init_net=extra_init_net,
            global_init_net=global_init_net,
            net_type='dag',
        )

        db_type = 'minidb'
        db_file = tempfile.NamedTemporaryFile(
            delete=False, suffix=".{}".format(db_type))
        pe.save_to_db(
            db_type=db_type,
            db_destination=db_file.name,
            predictor_export_meta=pem)

        workspace.ResetWorkspace()

        meta_net_def = pe.load_from_db(
            db_type=db_type,
            filename=db_file.name,
        )

        self.assertTrue("data" not in workspace.Blobs())
        self.assertTrue("y" not in workspace.Blobs())

        init_net = pred_utils.GetNet(meta_net_def, pc.PREDICT_INIT_NET_TYPE)

        # 0-fills externalblobs blobs and runs extra_init_net
        workspace.RunNetOnce(init_net)

        self.assertTrue("data" in workspace.Blobs())
        self.assertTrue("y" in workspace.Blobs())

        print(workspace.FetchBlob("data"))
        np.testing.assert_array_equal(
            workspace.FetchBlob("data"), np.ones(shape=(1, 5)))
        np.testing.assert_array_equal(
            workspace.FetchBlob("y"), np.zeros(shape=(1, 10)))

        self.assertTrue("global_init_blob" not in workspace.Blobs())
        # Load parameters from DB
        global_init_net = pred_utils.GetNet(meta_net_def,
                                            pc.GLOBAL_INIT_NET_TYPE)
        workspace.RunNetOnce(global_init_net)

        # make sure the extra global_init_net is running
        self.assertTrue(workspace.HasBlob('global_init_blob'))
        np.testing.assert_array_equal(
            workspace.FetchBlob("global_init_blob"), np.ones(shape=(1, 5)))

        # Run the net with a reshaped input and verify we are
        # producing good numbers (with our custom implementation)
        workspace.FeedBlob("data", np.random.randn(2, 5).astype(np.float32))
        predict_net = pred_utils.GetNet(meta_net_def, pc.PREDICT_NET_TYPE)
        self.assertEqual(predict_net.type, 'dag')
        workspace.RunNetOnce(predict_net)
        np.testing.assert_array_almost_equal(
            workspace.FetchBlob("y"),
            workspace.FetchBlob("data").dot(self.params["y_w"].T) +
            self.params["y_b"])

    def test_load_device_scope(self):
        for param, value in self.params.items():
            workspace.FeedBlob(param, value)

        pem = pe.PredictorExportMeta(
            predict_net=self.predictor_export_meta.predict_net,
            parameters=self.predictor_export_meta.parameters,
            inputs=self.predictor_export_meta.inputs,
            outputs=self.predictor_export_meta.outputs,
            shapes=self.predictor_export_meta.shapes,
            net_type='dag',
        )

        db_type = 'minidb'
        db_file = tempfile.NamedTemporaryFile(
            delete=False, suffix=".{}".format(db_type))
        pe.save_to_db(
            db_type=db_type,
            db_destination=db_file.name,
            predictor_export_meta=pem)

        workspace.ResetWorkspace()
        with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 1)):
            meta_net_def = pe.load_from_db(
                db_type=db_type,
                filename=db_file.name,
            )

        init_net = core.Net(pred_utils.GetNet(meta_net_def,
                            pc.GLOBAL_INIT_NET_TYPE))
        predict_init_net = core.Net(pred_utils.GetNet(
            meta_net_def, pc.PREDICT_INIT_NET_TYPE))

        # check device options
        for op in list(init_net.Proto().op) + list(predict_init_net.Proto().op):
            self.assertEqual(1, op.device_option.device_id)
            self.assertEqual(caffe2_pb2.CPU, op.device_option.device_type)

    def test_db_fails_without_params(self):
        with self.assertRaises(Exception):
            for db_type in ["minidb"]:
                db_file = tempfile.NamedTemporaryFile(
                    delete=False, suffix=".{}".format(db_type))
                pe.save_to_db(
                    db_type=db_type,
                    db_destination=db_file.name,
                    predictor_export_meta=self.predictor_export_meta)