File: predictor_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (73 lines) | stat: -rw-r--r-- 2,050 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73





import unittest
import numpy as np
from caffe2.python import workspace, core

from caffe2.proto import caffe2_pb2


class TestPredictor(unittest.TestCase):
    def setUp(self):
        np.random.seed(1)
        self.predict_net = self._predict_net
        self.init_net = self._init_net

    @property
    def _predict_net(self):
        net = caffe2_pb2.NetDef()
        net.name = 'test-predict-net'
        net.external_input[:] = ['A', 'B']
        net.external_output[:] = ['C']
        net.op.extend([
            core.CreateOperator(
                'MatMul',
                ['A', 'B'],
                ['C'],
            )
        ])
        return net.SerializeToString()

    @property
    def _init_net(self):
        net = caffe2_pb2.NetDef()
        net.name = 'test-init-net'
        net.external_output[:] = ['A', 'B']
        net.op.extend([
            core.CreateOperator(
                'GivenTensorFill',
                [],
                ['A'],
                shape=(2, 3),
                values=np.zeros((2, 3), np.float32).flatten().tolist(),
            ),
            core.CreateOperator(
                'GivenTensorFill',
                [],
                ['B'],
                shape=(3, 4),
                values=np.zeros((3, 4), np.float32).flatten().tolist(),
            ),
        ])
        return net.SerializeToString()

    def test_run(self):
        A = np.ones((2, 3), np.float32)
        B = np.ones((3, 4), np.float32)
        predictor = workspace.Predictor(self.init_net, self.predict_net)
        outputs = predictor.run([A, B])
        self.assertEqual(len(outputs), 1)
        np.testing.assert_almost_equal(np.dot(A, B), outputs[0])

    def test_run_map(self):
        A = np.zeros((2, 3), np.float32)
        B = np.ones((3, 4), np.float32)
        predictor = workspace.Predictor(self.init_net, self.predict_net)
        outputs = predictor.run({
            'B': B,
        })
        self.assertEqual(len(outputs), 1)
        np.testing.assert_almost_equal(np.dot(A, B), outputs[0])