1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
#pragma once
#include <unordered_map>
#include "caffe2/core/context.h"
#include "caffe2/core/init.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/memonger.h"
#include "caffe2/core/net.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/scope_guard.h"
#include "caffe2/core/tensor.h"
#include "caffe2/core/types.h"
#include "caffe2/core/workspace.h"
#include "caffe2/proto/caffe2_pb.h"
#include "caffe2/python/pybind_state_dlpack.h"
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <Python.h>
#ifdef USE_NUMPY
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#define PY_ARRAY_UNIQUE_SYMBOL caffe2_python_ARRAY_API
#include <numpy/arrayobject.h>
// Temporary solution for numpy < 1.7 versions: old macro, no promises.
// You're strongly advised to upgrade to >= 1.7.
#ifndef NPY_ARRAY_C_CONTIGUOUS
#define NPY_ARRAY_C_CONTIGUOUS NPY_C_CONTIGUOUS
#define PyArray_SetBaseObject(arr, x) (PyArray_BASE(arr) = (x))
#endif
#else
struct PyArrayObject; // Forward declaring PyArrayObject for safety
#endif // USE_NUMPY
namespace caffe2 {
namespace python {
namespace py = pybind11;
// Add methods common to both CPU and GPU mode.
void addGlobalMethods(pybind11::module& m);
// Expose Workspace, Net, Blob
void addObjectMethods(pybind11::module& m);
// Get current workspace
Workspace* GetCurrentWorkspace();
// Get workspace by name. Returns nullptr if none exists by name.
Workspace* GetWorkspaceByName(const std::string& name);
class C10_EXPORT BlobFetcherBase {
public:
struct FetchedBlob {
pybind11::object obj;
bool copied;
};
virtual ~BlobFetcherBase();
virtual pybind11::object Fetch(const Blob& blob) = 0;
};
class BlobFeederBase {
public:
virtual ~BlobFeederBase();
virtual void Feed(
const DeviceOption& option,
PyArrayObject* array,
Blob* blob,
bool in_place = false) = 0;
};
C10_DECLARE_TYPED_REGISTRY(
BlobFetcherRegistry,
TypeIdentifier,
BlobFetcherBase,
std::unique_ptr);
#define REGISTER_BLOB_FETCHER(id, ...) \
C10_REGISTER_TYPED_CLASS(BlobFetcherRegistry, id, __VA_ARGS__)
inline unique_ptr<BlobFetcherBase> CreateFetcher(TypeIdentifier id) {
return BlobFetcherRegistry()->Create(id);
}
C10_DECLARE_TYPED_REGISTRY(
BlobFeederRegistry,
DeviceType,
BlobFeederBase,
std::unique_ptr);
#define REGISTER_BLOB_FEEDER(device_type, ...) \
C10_REGISTER_TYPED_CLASS(BlobFeederRegistry, device_type, __VA_ARGS__)
inline unique_ptr<BlobFeederBase> CreateFeeder(int device_type) {
return BlobFeederRegistry()->Create(
caffe2::ProtoToType(static_cast<DeviceTypeProto>(device_type)));
}
static_assert(
sizeof(int) == sizeof(int32_t),
"We make an assumption that int is always int32 for numpy "
"type mapping.");
int CaffeToNumpyType(const TypeMeta dtype);
const TypeMeta NumpyTypeToCaffe(int numpy_type);
class TensorFetcher : public BlobFetcherBase {
public:
pybind11::object Fetch(const Blob& blob) override {
return FetchTensor(blob.Get<Tensor>(), true).obj;
}
// Checks whether the data with type `dtype` needs to be copied in the context
// of `tensor`
bool NeedsCopy(const Tensor* tensor, const TypeMeta dtype) const {
#ifdef USE_NUMPY
return tensor->GetDeviceType() != CPU ||
CaffeToNumpyType(dtype) == NPY_OBJECT;
#else
return tensor->GetDeviceType() != CPU;
#endif // USE_NUMPY
}
FetchedBlob FetchTensor(const Tensor& tensor, bool force_copy) {
#ifdef USE_NUMPY
FetchedBlob result;
CAFFE_ENFORCE_GE(tensor.numel(), 0, "Trying to fetch uninitialized tensor");
const int numpy_type = CaffeToNumpyType(tensor.dtype());
CAFFE_ENFORCE(
numpy_type != -1,
"This tensor's data type is not supported: ",
tensor.dtype().name(),
".");
std::vector<npy_intp> npy_dims;
for (const auto dim : tensor.sizes()) {
npy_dims.push_back(dim);
}
result.copied = force_copy || NeedsCopy(&tensor, tensor.dtype());
void* outPtr;
if (result.copied) {
result.obj = py::reinterpret_steal<py::object>(
PyArray_SimpleNew(tensor.dim(), npy_dims.data(), numpy_type));
outPtr = static_cast<void*>(
PyArray_DATA(reinterpret_cast<PyArrayObject*>(result.obj.ptr())));
} else {
outPtr = const_cast<Tensor&>(tensor).raw_mutable_data();
result.obj = py::reinterpret_steal<py::object>(PyArray_SimpleNewFromData(
tensor.dim(), npy_dims.data(), numpy_type, outPtr));
}
if (numpy_type == NPY_OBJECT) {
PyObject** outObj = reinterpret_cast<PyObject**>(outPtr);
auto* str = tensor.template data<std::string>();
for (const auto i : c10::irange(tensor.numel())) {
outObj[i] = PyBytes_FromStringAndSize(str->data(), str->size());
str++;
// cleanup on failure
if (outObj[i] == nullptr) {
for (const auto j : c10::irange(i)) {
Py_DECREF(outObj[j]);
}
CAFFE_THROW("Failed to allocate string for ndarray of strings.");
}
}
return result;
}
if (result.copied) {
// TODO: use CUDAGuard here instead of context and employ explicit sync
// copy
auto context = CreateContext(tensor.GetDeviceType());
context->CopyBytesToCPU(tensor.nbytes(), tensor.raw_data(), outPtr);
context->FinishDeviceComputation();
}
return result;
#else
CAFFE_THROW("Caffe2 was compiled without NumPy support.");
#endif // USE_NUMPY
}
};
template <class Context>
class TensorFeeder : public BlobFeederBase {
public:
Tensor FeedTensor(const DeviceOption& option, PyArrayObject* original_array) {
Tensor out;
FeedTensor(option, original_array, &out, false);
return out;
}
void FeedTensor(
const DeviceOption& option,
PyArrayObject* original_array,
Tensor* out,
bool in_place) {
#ifdef USE_NUMPY
PyArrayObject* array = PyArray_GETCONTIGUOUS(original_array);
auto g = MakeGuard([&]() { Py_XDECREF(array); });
const auto npy_type = PyArray_TYPE(array);
const TypeMeta dtype = NumpyTypeToCaffe(npy_type);
CAFFE_ENFORCE(
dtype != ScalarType::Undefined,
"This numpy data type is not supported: ",
PyArray_TYPE(array),
".");
Context context(option);
context.SwitchToDevice();
// numpy requires long int as its dims.
int ndim = PyArray_NDIM(array);
npy_intp* npy_dims = PyArray_DIMS(array);
std::vector<int64_t> dims;
for (const auto i : c10::irange(ndim)) {
dims.push_back(npy_dims[i]);
}
Tensor& tensor = *out;
if (in_place) {
tensor.Resize(dims);
}
// Now, copy the data to the tensor.
switch (npy_type) {
case NPY_OBJECT: {
PyObject** input = reinterpret_cast<PyObject**>(PyArray_DATA(array));
if (!in_place) {
tensor = caffe2::empty(
dims, at::dtype<std::string>().device(Context::GetDeviceType()));
}
auto* outPtr = tensor.template mutable_data<std::string>();
for (const auto i : c10::irange(tensor.numel())) {
char* str;
Py_ssize_t strSize;
if (PyBytes_Check(input[i])) {
CAFFE_ENFORCE(
PyBytes_AsStringAndSize(input[i], &str, &strSize) != -1,
"Had a PyBytes object but cannot convert it to a string.");
} else if (PyUnicode_Check(input[i])) { // string
str =
const_cast<char*>(PyUnicode_AsUTF8AndSize(input[i], &strSize));
CAFFE_ENFORCE(
str,
"Had a PyUnicode object but cannot convert it to a string.");
} else {
CAFFE_THROW("Unsupported python object type passed into ndarray.");
}
outPtr[i] = std::string(str, strSize);
}
break;
}
case NPY_UNICODE:
CAFFE_THROW(
"You are feeding in a numpy array of unicode. Caffe2 C++ does not "
"support unicode yet. Please ensure that you are passing in bytes "
"instead of unicode strings.");
break;
default:
if (!in_place) {
tensor = caffe2::empty(
dims, at::dtype(dtype).device(Context::GetDeviceType()));
} else {
tensor.raw_mutable_data(dtype);
}
context.CopyBytesFromCPU(
tensor.numel() * dtype.itemsize(),
static_cast<void*>(PyArray_DATA(array)),
tensor.raw_mutable_data());
}
context.FinishDeviceComputation();
#else
CAFFE_THROW("Caffe2 compiled without NumPy support.");
#endif // USE_NUMPY
}
virtual void Feed(
const DeviceOption& option,
PyArrayObject* original_array,
Blob* blob,
bool in_place) {
if (in_place) {
FeedTensor(
option,
original_array,
BlobGetMutableTensor(blob, OptionToDevice(option).type()),
true);
} else {
blob->Reset<Tensor>(new Tensor(FeedTensor(option, original_array)));
}
}
};
namespace python_detail {
struct Func {
py::object py_func;
bool needs_workspace;
};
const Func& getOpFunc(const std::string& token);
const Func& getGradientFunc(const std::string& token);
} // namespace python_detail
// TODO: Remove template?
template <class Context, bool use_dlpack>
class PythonOpBase : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
PythonOpBase(
const OperatorDef& operator_def,
Workspace* ws,
const std::string& pickled_builder_arg_name)
: Operator<Context>(operator_def, ws),
ws_(ws),
token_(OperatorBase::template GetSingleArgument<std::string>(
"token",
"")) {
using namespace python_detail;
auto pickled = OperatorBase::template GetSingleArgument<std::string>(
pickled_builder_arg_name, "");
CAFFE_ENFORCE(
!pickled.empty() || !token_.empty(),
"PythonOp requires either pickled_builder or token arg.");
if (!pickled.empty()) {
py::gil_scoped_acquire g;
try {
auto pickle =
py::reinterpret_steal<py::object>(PyImport_ImportModule("pickle"));
CAFFE_ENFORCE(pickle);
auto loads = pickle.attr("loads").cast<py::object>();
CAFFE_ENFORCE(loads);
py::tuple builder_call;
try {
builder_call = loads(py::bytes(pickled)).cast<py::tuple>();
} catch (const py::error_already_set& e) {
LOG(INFO) << "Cannot unpickle python operator: " << e.what();
LOG(INFO) << "Try latin1 encoding for python3 run";
// to use the `_a` literal for arguments
using namespace pybind11::literals;
builder_call = loads(py::bytes(pickled), "encoding"_a = "latin1")
.template cast<py::tuple>();
}
CAFFE_ENFORCE(builder_call);
CAFFE_ENFORCE_EQ(py::len(builder_call), 3);
auto func = builder_call[0].cast<py::object>();
auto args = builder_call[1].cast<py::tuple>();
auto kwargs = builder_call[2].cast<py::dict>();
auto built_func = func(*args, **kwargs);
CAFFE_ENFORCE(built_func);
built_func_.reset(new Func{
built_func,
OperatorBase::template GetSingleArgument<bool>(
"pass_workspace", false)});
} catch (const py::error_already_set& e) {
LOG(ERROR) << "Python exception encountered while creating PythonOp: "
<< e.what();
// Rethrow exception to preserve python exception type.
throw;
}
}
}
bool RunOnDevice() override final {
auto* pyFunc = built_func_ ? built_func_.get() : &getFunc(token_);
CAFFE_ENFORCE(pyFunc);
{
// Acquire GIL for call to Python runtime.
py::gil_scoped_acquire g;
DeviceOption cpu_option;
cpu_option.set_device_type(PROTO_CPU);
std::vector<py::object> inputs;
inputs.reserve(InputSize());
for (const auto i : c10::irange(InputSize())) {
const auto* blob = &InputBlob(i);
// Allow CPU tensors in addition to operator context's tensors
py::object py_obj;
CAFFE_ENFORCE(
BlobIsTensorType(*blob, CPU),
"We only allow input blob to be CPU Tensor");
if (use_dlpack) {
DLPackWrapper<CPUContext> wrapper(
const_cast<Tensor*>(&(BlobGetTensor(*blob, CPU))), cpu_option);
// copy wrapper
py_obj = py::cast(wrapper, py::return_value_policy::copy);
} else {
py_obj = py::cast(
&(BlobGetTensor(*blob, CPU)), py::return_value_policy::reference);
}
inputs.push_back(py_obj);
}
std::vector<py::object> outputs;
outputs.reserve(OutputSize());
for (const auto i : c10::irange(OutputSize())) {
auto* blob = OutputBlob(i);
// Python op is always used with CPUContext only and treats inputs and
// outputs as CPU tensors, CUDA version of PythonOp is implemented
// through GPUFallbackOp that copies input CUDA blobs to CPU and copies
// outputs from CUDA to CPU.
// GPUFallbackOp also allows keeping some of the output blobs on CPU
// by specifying their indices explicitly in template parameters.
// PythonDLPack op allows working CPU blobs only through DLPack tensors.
// We don't have use cases of CUDA version yet, but if there is such use
// case, we can use GPUFallbackOp to enable it.
py::object py_obj;
if (use_dlpack) {
DLPackWrapper<CPUContext> wrapper(
BlobGetMutableTensor(blob, CPU), cpu_option);
py_obj = py::cast(wrapper, py::return_value_policy::copy);
} else {
py_obj = py::cast(
BlobGetMutableTensor(blob, CPU),
py::return_value_policy::reference);
}
outputs.push_back(py_obj);
}
try {
if (pyFunc->needs_workspace) {
pyFunc->py_func(inputs, outputs, ws_);
} else {
pyFunc->py_func(inputs, outputs);
}
} catch (const py::error_already_set& e) {
LOG(ERROR) << "Exception encountered running PythonOp function: "
<< e.what();
// Rethrow exception to preserve python exception type.
throw;
}
}
return true;
}
virtual ~PythonOpBase() {
if (built_func_) {
// since it may trigger python interpreter when refcount reaches zero
py::gil_scoped_acquire g;
built_func_.reset();
}
}
protected:
virtual const python_detail::Func& getFunc(const std::string& token) = 0;
Workspace* ws_;
private:
const std::string token_;
std::unique_ptr<python_detail::Func> built_func_;
};
template <class Context, bool use_dlpack>
class PythonOp : public PythonOpBase<Context, use_dlpack> {
public:
PythonOp(const OperatorDef& operator_def, Workspace* ws)
: PythonOpBase<Context, use_dlpack>(operator_def, ws, "pickled_builder") {
}
protected:
const python_detail::Func& getFunc(const std::string& token) override {
return python_detail::getOpFunc(token);
}
};
template <class Context, bool use_dlpack>
class PythonGradientOp : public PythonOpBase<Context, use_dlpack> {
public:
PythonGradientOp(const OperatorDef& operator_def, Workspace* ws)
: PythonOpBase<Context, use_dlpack>(
operator_def,
ws,
"pickled_grad_builder") {}
protected:
const python_detail::Func& getFunc(const std::string& token) override {
return python_detail::getGradientFunc(token);
}
};
} // namespace python
} // namespace caffe2
|