1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
from caffe2.python import core, workspace
from caffe2.python.core import CreatePythonOperator
import caffe2.python.hypothesis_test_util as hu
from hypothesis import given, settings
import hypothesis.strategies as st
import numpy as np
class CustomError(Exception):
pass
def SubFunctionThatThrowsCustomError():
raise CustomError("This is an intentional exception.")
def MainOpFunctionThatThrowsCustomError(inputs, _):
return SubFunctionThatThrowsCustomError()
def MainOpFunctionThatThrowsCustomErrorInBuilder(inputs, _):
raise CustomError("This is an intentional exception in builder.")
def op_builder(name, index, extra):
iterations = [0]
assert name == 'name'
assert index == 5
assert extra - 4.2 < 0.0001
def my_op(inputs, outputs):
assert inputs[0].data[0] == iterations[0]
assert name == 'name'
assert index == 5
assert extra - 4.2 < 0.0001
iterations[0] += 1
return my_op
class PythonOpTest(hu.HypothesisTestCase):
@given(x=hu.tensor())
def test_feed(self, x):
def f(inputs, _):
self.assertEqual(x.shape, inputs[0].shape)
self.assertEqual(type(inputs[0].shape), tuple)
self.assertEqual(type(inputs[0].data), np.ndarray)
np.testing.assert_almost_equal(x, inputs[0].data)
op = CreatePythonOperator(f, ["x"], [])
workspace.FeedBlob("x", x)
workspace.RunOperatorOnce(op)
def test_exception(self):
op = CreatePythonOperator(MainOpFunctionThatThrowsCustomError, [], [])
with self.assertRaisesRegex(CustomError, "This is an intentional exception."):
workspace.RunOperatorOnce(op)
def test_exception_builder(self):
op = CreatePythonOperator(MainOpFunctionThatThrowsCustomErrorInBuilder, [], [])
with self.assertRaisesRegex(CustomError, "This is an intentional exception in builder."):
workspace.RunOperatorOnce(op)
@given(x=hu.tensor())
def test_feed_with_helper_function(self, x):
def f(inputs, _):
self.assertEqual(x.shape, inputs[0].shape)
self.assertEqual(type(inputs[0].shape), tuple)
self.assertEqual(type(inputs[0].data), np.ndarray)
np.testing.assert_almost_equal(x, inputs[0].data)
net = core.Net("test")
net.Python(f)(["x"], [])
workspace.FeedBlob("x", x)
workspace.RunNetOnce(net)
def test_builder_tuple(self):
net = core.Net("builder_template")
iter_blob = 'iter'
net.Python((op_builder, ['name', 5], {'extra': 4.2}))([iter_blob], [])
net.Python((op_builder, ['name', 5], {'extra': 4.2}))([iter_blob], [])
for repeat in range(2):
# check that the builder will be called exactly once for each
# PythonOp constructor. Cloning the net will also trigger a call
# to the builder when the net is created.
cloned_net = net.Clone('builder_%d' % repeat)
workspace.FeedBlob(iter_blob, np.array([0]))
# Builder gets called once per python op in the line below
workspace.CreateNet(cloned_net)
for i in range(10):
workspace.FeedBlob(iter_blob, np.array([i]))
workspace.RunNet(cloned_net)
@given(x=hu.tensor())
def test_feed_with_gc(self, x):
def f(inputs, _):
self.assertEqual(x.shape, inputs[0].shape)
np.testing.assert_almost_equal(x, inputs[0].data)
op = CreatePythonOperator(f, ["x"], [])
workspace.FeedBlob("x", x)
workspace.RunOperatorOnce(op)
del f
workspace.FeedBlob("x", x)
workspace.RunOperatorOnce(op)
@given(x=hu.tensor())
def test_reshape(self, x):
def f(inputs, outputs):
outputs[0].reshape(inputs[0].shape)
self.assertEqual(x.shape, inputs[0].shape)
self.assertEqual(x.shape, outputs[0].shape)
outputs[0].data[...] = inputs[0].data
op = CreatePythonOperator(f, ["x"], ["y"])
workspace.FeedBlob("x", x)
workspace.RunOperatorOnce(op)
y = workspace.FetchBlob("y")
np.testing.assert_almost_equal(x, y)
@given(x=hu.tensor())
def test_workspace_manipulation(self, x):
"""
Verify that python op can manipulate workspace directly
"""
def f(inputs, outputs, ws):
fetched = ws.blobs['internal'].fetch()
np.testing.assert_almost_equal(fetched, x)
ws = workspace.C.Workspace()
net = core.Net("test")
net.GivenTensorFill([], ['internal'], values=x, shape=x.shape)
net.Python(f, pass_workspace=True)([], [])
ws.run(net)
@given(x=hu.tensor())
def test_caught_exception_doesnt_terminate(self, x):
def f(inputs, outputs):
try:
raise Exception("Exception in handler")
except Exception:
pass
op = CreatePythonOperator(f, ["x"], ["y"])
workspace.FeedBlob("x", x)
workspace.RunOperatorOnce(op)
@given(x=hu.tensor(),
n=st.integers(min_value=1, max_value=20),
w=st.integers(min_value=1, max_value=20))
@settings(deadline=1000)
def test_multithreaded_evaluation(self, x, n, w):
def f(inputs, outputs):
outputs[0].reshape(inputs[0].shape)
outputs[0].data[...] = inputs[0].data
ops = [CreatePythonOperator(f, ["x"], [str(i)]) for i in range(n)]
net = core.Net("net")
net.Proto().op.extend(ops)
net.Proto().type = "dag"
net.Proto().num_workers = w
iters = 100
plan = core.Plan("plan")
plan.AddStep(core.ExecutionStep("test-step", net, iters))
workspace.FeedBlob("x", x)
workspace.RunPlan(plan.Proto().SerializeToString())
for i in range(n):
y = workspace.FetchBlob(str(i))
np.testing.assert_almost_equal(x, y)
@given(x=hu.tensor(), in_place=st.booleans(), **hu.gcs)
@settings(deadline=10000)
def test_gradient(self, x, in_place, gc, dc):
def f(inputs, outputs):
outputs[0].reshape(inputs[0].shape)
outputs[0].data[...] = inputs[0].data * 2
def grad_f(inputs, outputs):
# Ordering is [inputs, outputs, grad_outputs]
grad_output = inputs[2]
grad_input = outputs[0]
grad_input.reshape(grad_output.shape)
grad_input.data[...] = grad_output.data * 2
op = CreatePythonOperator(
f, ["x"], ["x" if in_place else "y"], grad_f=grad_f)
self.assertGradientChecks(gc, op, [x], 0, [0])
self.assertDeviceChecks(dc, op, [x], [0])
@given(inputs=hu.tensors(n=2), **hu.gcs)
@settings(deadline=10000)
def test_gradient_multiple(self, inputs, gc, dc):
(x1, x2) = inputs
def f(inputs, outputs):
for idx in [0, 1]:
self.assertEqual(type(inputs[idx].shape), tuple)
outputs[idx].reshape(inputs[idx].shape)
outputs[idx].data[...] = inputs[idx].data * 2
def grad_f(inputs, outputs):
# Ordering is [inputs, outputs, grad_outputs]
self.assertEqual(len(inputs), 6)
self.assertEqual(len(outputs), 2)
for (grad_output_idx, grad_input_idx) in [(4, 0), (5, 1)]:
grad_output = inputs[grad_output_idx]
grad_input = outputs[grad_input_idx]
grad_input.reshape(grad_output.shape)
grad_input.data[...] = grad_output.data * 2
op = CreatePythonOperator(f, ["x1", "x2"], ["y1", "y2"], grad_f=grad_f)
for idx in [0, 1]:
self.assertGradientChecks(gc, op, [x1, x2], idx, [0, 1])
self.assertDeviceChecks(dc, op, [x1, x2], [0, 1])
@given(inputs=hu.tensors(n=3), **hu.gcs)
@settings(deadline=10000)
def test_gradient_multiple_with_indices(self, inputs, gc, dc):
(x1, x2, x3) = inputs
def f(inputs, outputs):
for idx in [0, 1, 2]:
self.assertEqual(type(inputs[idx].shape), tuple)
outputs[idx].reshape(inputs[idx].shape)
outputs[idx].data[...] = inputs[idx].data * 2
def grad_f(inputs, outputs):
# Ordering is [inputs, outputs, grad_outputs]
self.assertEqual(len(inputs), 8)
self.assertEqual(len(outputs), 1)
for (grad_output_idx, grad_input_idx) in [(6, 0)]:
grad_output = inputs[grad_output_idx]
grad_input = outputs[grad_input_idx]
grad_input.reshape(grad_output.shape)
grad_input.data[...] = grad_output.data * 2
op = CreatePythonOperator(
f, ["x1", "x2", "x3"], ["y1", "y2", "y3"],
grad_f=grad_f,
grad_output_indices=[0, 2], # Receive grad outputs for y1 and y3
grad_input_indices=[0] # Produce grad inputs for x1
)
self.assertGradientChecks(gc, op, [x1, x2, x3], 0, [0, 2])
self.assertDeviceChecks(dc, op, [x1, x2, x3], [0, 1, 2])
|