1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
import numpy.testing as npt
from caffe2.python import core, layer_model_instantiator, regularizer, schema, workspace
from caffe2.python.layer_test_util import LayersTestCase
from caffe2.python.optimizer import SgdOptimizer
from caffe2.python.regularizer import L1Norm, RegularizationBy
from caffe2.python.regularizer_context import RegularizerContext, UseRegularizer
from hypothesis import given
class TestRegularizerContext(LayersTestCase):
@given(X=hu.arrays(dims=[2, 5]))
def test_regularizer_context(self, X):
weight_reg_out = L1Norm(0.2)
bias_reg_out = L1Norm(0)
regularizers = {"WEIGHT": weight_reg_out, "BIAS": bias_reg_out}
output_dims = 2
input_record = self.new_record(schema.Scalar((np.float32, (5,))))
schema.FeedRecord(input_record, [X])
with UseRegularizer(regularizers):
weight_reg = RegularizerContext.current().get_regularizer("WEIGHT")
bias_reg = RegularizerContext.current().get_regularizer("BIAS")
optim = SgdOptimizer(0.15)
assert (
weight_reg == weight_reg_out
), "fail to get correct weight reg from context"
assert bias_reg == bias_reg_out, "fail to get correct bias reg from context"
fc_output = self.model.FC(
input_record,
output_dims,
weight_optim=optim,
bias_optim=optim,
weight_reg=weight_reg,
bias_reg=bias_reg,
)
# model.output_schema has to a struct
self.model.output_schema = schema.Struct(("fc_output", fc_output))
self.assertEqual(schema.Scalar((np.float32, (output_dims,))), fc_output)
_, train_net = layer_model_instantiator.generate_training_nets(self.model)
ops = train_net.Proto().op
ops_type_list = [ops[i].type for i in range(len(ops))]
assert ops_type_list.count("LpNorm") == 2
assert ops_type_list.count("Scale") == 4
assert ops_type_list.count("LpNormGradient") == 2
class TestRegularizer(LayersTestCase):
@given(X=hu.arrays(dims=[2, 5], elements=hu.floats(min_value=-1.0, max_value=1.0)))
def test_log_barrier(self, X):
param = core.BlobReference("X")
workspace.FeedBlob(param, X)
train_init_net, train_net = self.get_training_nets()
reg = regularizer.LogBarrier(1.0)
output = reg(train_net, train_init_net, param, by=RegularizationBy.ON_LOSS)
reg(
train_net,
train_init_net,
param,
grad=None,
by=RegularizationBy.AFTER_OPTIMIZER,
)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
def ref(X):
return (
np.array(np.sum(-np.log(np.clip(X, 1e-9, None))) * 0.5).astype(
np.float32
),
np.clip(X, 1e-9, None),
)
for x, y in zip(workspace.FetchBlobs([output, param]), ref(X)):
npt.assert_allclose(x, y, rtol=1e-3)
@given(
X=hu.arrays(dims=[2, 5], elements=hu.floats(min_value=-1.0, max_value=1.0)),
left_open=st.booleans(),
right_open=st.booleans(),
eps=hu.floats(min_value=1e-6, max_value=1e-4),
ub=hu.floats(min_value=-1.0, max_value=1.0),
lb=hu.floats(min_value=-1.0, max_value=1.0),
**hu.gcs_cpu_only
)
def test_bounded_grad_proj(self, X, left_open, right_open, eps, ub, lb, gc, dc):
if ub - (eps if right_open else 0.) < lb + (eps if left_open else 0.):
return
param = core.BlobReference("X")
workspace.FeedBlob(param, X)
train_init_net, train_net = self.get_training_nets()
reg = regularizer.BoundedGradientProjection(
lb=lb, ub=ub, left_open=left_open, right_open=right_open, epsilon=eps
)
output = reg(train_net, train_init_net, param, by=RegularizationBy.ON_LOSS)
reg(
train_net,
train_init_net,
param,
grad=None,
by=RegularizationBy.AFTER_OPTIMIZER,
)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
def ref(X):
return np.clip(
X, lb + (eps if left_open else 0.), ub - (eps if right_open else 0.)
)
assert output is None
npt.assert_allclose(workspace.blobs[param], ref(X), atol=1e-7)
@given(
output_dim=st.integers(1, 10),
input_num=st.integers(3, 30),
reg_weight=st.integers(0, 10)
)
def test_group_l1_norm(self, output_dim, input_num, reg_weight):
"""
1. create a weight blob
2. create random group splits
3. run group_l1_nrom with the weight blob
4. run equivalent np operations to calculate group l1 norm
5. compare if the results from 3 and 4 are equal
"""
def compare_reference(weight, group_boundaries, reg_lambda, output):
group_splits = np.hsplit(weight, group_boundaries[1:-1])
l2_reg = np.sqrt([np.sum(np.square(g)) for g in group_splits])
l2_normalized = np.multiply(l2_reg,
np.array([np.sqrt(g.shape[1]) for g in group_splits]))
result = np.multiply(np.sum(l2_normalized), reg_lambda)
npt.assert_almost_equal(result, workspace.blobs[output], decimal=2)
weight = np.random.rand(output_dim, input_num).astype(np.float32)
feature_num = np.random.randint(low=1, high=input_num - 1)
group_boundaries = [0]
group_boundaries = np.append(
group_boundaries,
np.sort(
np.random.choice(range(1, input_num - 1), feature_num, replace=False)
),
)
group_boundaries = np.append(group_boundaries, [input_num])
split_info = np.diff(group_boundaries)
weight_blob = core.BlobReference("weight_blob")
workspace.FeedBlob(weight_blob, weight)
train_init_net, train_net = self.get_training_nets()
reg = regularizer.GroupL1Norm(reg_weight * 0.1, split_info.tolist())
output = reg(
train_net, train_init_net, weight_blob, by=RegularizationBy.ON_LOSS
)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
compare_reference(weight, group_boundaries, reg_weight * 0.1, output)
@given(
param_dim=st.integers(10, 30),
k=st.integers(5, 9),
reg_weight=st.integers(0, 10)
)
def test_l1_norm_trimmed(self, param_dim, k, reg_weight):
weight = np.random.rand(param_dim).astype(np.float32)
weight_blob = core.BlobReference("weight_blob")
workspace.FeedBlob(weight_blob, weight)
train_init_net, train_net = self.get_training_nets()
reg = regularizer.L1NormTrimmed(reg_weight * 0.1, k)
output = reg(
train_net, train_init_net, weight_blob, by=RegularizationBy.ON_LOSS
)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
result = np.sum(np.sort(np.absolute(weight))[:(param_dim - k)]) * reg_weight * 0.1
npt.assert_almost_equal(result, workspace.blobs[output], decimal=2)
@given(
param_dim=st.integers(10, 30),
k=st.integers(5, 9),
l1=st.integers(0, 10),
l2=st.integers(0, 10)
)
def test_elastic_l1_norm_trimmed(self, param_dim, k, l1, l2):
weight = np.random.rand(param_dim).astype(np.float32)
weight_blob = core.BlobReference("weight_blob")
workspace.FeedBlob(weight_blob, weight)
train_init_net, train_net = self.get_training_nets()
reg = regularizer.ElasticNetL1NormTrimmed(l1 * 0.1, l2 * 0.1, k)
output = reg(
train_net, train_init_net, weight_blob, by=RegularizationBy.ON_LOSS
)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
l1_norm = np.sum(np.sort(np.absolute(weight))[:(param_dim - k)])
l2_norm = np.sum(np.square(weight))
result = l1_norm * l1 * 0.1 + l2_norm * l2 * 0.1
npt.assert_almost_equal(result, workspace.blobs[output], decimal=2)
@given(
row_dim=st.integers(5, 10),
norm=st.floats(min_value=1.0, max_value=4.0),
data_strategy=st.data(),
)
def test_fp16_max_norm(self, row_dim, norm, data_strategy):
weight = np.random.rand(row_dim, 5).astype(np.float16)
grad = np.random.rand(row_dim, 5).astype(np.float16)
# generate indices that will be updated
indices = data_strategy.draw(
hu.tensor(
dtype=np.int64,
min_dim=1,
max_dim=1,
elements=st.sampled_from(np.arange(weight.shape[0])),
)
)
indices = np.unique(indices)
# compute expected result
result = weight.copy()
# prevent dived by zero
eps = 1e-12
norms = np.sqrt(np.sum(result[indices, ] ** 2, axis=1, keepdims=True))
# if the norms are smaller than max_norm, then it doesn't need update
desired = np.clip(norms, 0, norm)
# apply max norm
result[indices, ] *= desired / (eps + norms)
weight_blob = core.BlobReference("weight_blob")
workspace.FeedBlob(weight_blob, weight)
grad_blob = core.BlobReference("grad_blob")
workspace.FeedBlob(grad_blob, grad)
indices_blob = core.BlobReference("indices")
workspace.FeedBlob(indices_blob, indices)
grad_blob_slice = core.GradientSlice(indices=indices_blob, values=grad_blob)
train_init_net, train_net = self.get_training_nets()
reg = regularizer.MaxNorm(norm, dtype='fp16')
reg(
train_net, train_init_net, weight_blob, grad_blob_slice, by=RegularizationBy.AFTER_OPTIMIZER
)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
npt.assert_almost_equal(result, workspace.FetchBlob('weight_blob'), decimal=2)
|