File: schema.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1319 lines) | stat: -rw-r--r-- 45,621 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
## @package schema
# Module caffe2.python.schema
"""
Defines a minimal set of data types that allow to represent datasets with
arbitrary nested structure, including objects of variable length, such as
maps and lists.

This defines a columnar storage format for such datasets on top of caffe2
tensors. In terms of capacity of representation, it can represent most of
the data types supported by Parquet, ORC, DWRF file formats.

See comments in operator_test/dataset_ops_test.py for an example and
walkthrough on how to use schema to store and iterate through a structured
in-memory dataset.
"""





import logging
import numpy as np
from caffe2.python import core
from caffe2.python import workspace
from caffe2.python.core import BlobReference
from collections import OrderedDict, namedtuple
from past.builtins import basestring
from future.utils import viewitems, viewkeys, viewvalues
from itertools import islice
from six import StringIO
from typing import Sequence

logger = logging.getLogger(__name__)

FIELD_SEPARATOR = ':'


def _join_field_name(prefix, suffix):
    if prefix and suffix:
        return '{}{}{}'.format(prefix, FIELD_SEPARATOR, suffix)
    elif prefix:
        return prefix
    elif suffix:
        return suffix
    else:
        return ''


def _normalize_field(field_or_type_or_blob, keep_blobs=True):
    """Clones/normalizes a field before adding it to a container."""
    if isinstance(field_or_type_or_blob, Field):
        return field_or_type_or_blob.clone(keep_blobs=keep_blobs)
    elif type(field_or_type_or_blob) in (type, np.dtype):
        return Scalar(dtype=field_or_type_or_blob)
    else:
        return Scalar(blob=field_or_type_or_blob)


FeatureSpec = namedtuple(
    'FeatureSpec',
    [
        'feature_type',
        'feature_names',
        'feature_ids',
        'feature_is_request_only',
        'desired_hash_size',
        'feature_to_index',
    ]
)

# pyre-fixme[16]: `FeatureSpec.__new__` has no attribute `__defaults__`
FeatureSpec.__new__.__defaults__ = (None, None, None, None, None, None)


class Metadata(
    namedtuple(
        'Metadata', ['categorical_limit', 'expected_value', 'feature_specs']
    )
):
    """Represents additional information associated with a scalar in schema.

    `categorical_limit` - for fields of integral type that are guaranteed to be
    non-negative it specifies the maximum possible value plus one. It's often
    used as a size of an embedding table.

    `expected_value` - anticipated average value of elements in the field.
    Usually makes sense for length fields of lists.

    `feature_specs` - information about the features that contained in this
    field. For example if field have more than 1 feature it can have list of
    feature names contained in this field."""
    __slots__: Sequence[str] = ()


# pyre-fixme[16]: `Metadata.__new__` has no attribute `__defaults__`
Metadata.__new__.__defaults__ = (None, None, None)


class Field(object):
    """Represents an abstract field type in a dataset.
    """

    __slots__: Sequence[str] = ("_parent", "_field_offsets")

    def __init__(self, children):
        """Derived classes must call this after their initialization."""
        self._parent = (None, 0)
        offset = 0
        self._field_offsets = []
        for child in children:
            self._field_offsets.append(offset)
            offset += len(child.field_names())
        self._field_offsets.append(offset)

    def clone_schema(self):
        return self.clone(keep_blobs=False)

    def field_names(self):
        """Return the children field names for this field."""
        raise NotImplementedError('Field is an abstract class.')

    def field_types(self):
        """Return the numpy.dtype for each of the children fields."""
        raise NotImplementedError('Field is an abstract class.')

    def field_metadata(self):
        """Return the Metadata for each of the children fields."""
        raise NotImplementedError('Field is an abstract class.')

    def field_blobs(self):
        """Return the list of blobs with contents for this Field.
        Values can either be all numpy.ndarray or BlobReference.
        If any of the fields doesn't have a blob, throws.
        """
        raise NotImplementedError('Field is an abstract class.')

    def all_scalars(self):
        """Return the list of all Scalar instances in the Field.
        The order is the same as for field_names() or field_blobs()"""
        raise NotImplementedError('Field is an abstract class.')

    def has_blobs(self):
        """Return True if every scalar of this field has blobs."""
        raise NotImplementedError('Field is an abstract class.')

    def clone(self, keep_blobs=True):
        """Clone this Field along with its children."""
        raise NotImplementedError('Field is an abstract class.')

    def _set_parent(self, parent, relative_id):
        self._parent = (parent, relative_id)

    def slice(self):
        """
        Returns a slice representing the range of field ids that belong to
        this field. This slice can be used to index a list of fields.

        E.g.:

        >>> s = Struct(
        >>>     ('a', Scalar()),
        >>>     ('b', Struct(
        >>>         ('b1', Scalar()),
        >>>         ('b2', Scalar()),
        >>>     )),
        >>>     ('c', Scalar()),
        >>> )
        >>> field_data = ['da', 'db1', 'db2', 'dc']
        >>> field_data[s.b.split()]
        ['db1', 'db2']
        """
        base_id = self._child_base_id()
        return slice(base_id, base_id + len(self.field_names()))

    def _child_base_id(self, child_index=None):
        """Get the base id of the given child"""
        p, i = self._parent
        pos = 0 if child_index is None else self._field_offsets[child_index]
        if p:
            pos += p._child_base_id(i)
        return pos

    def __eq__(self, other):
        """Equivalance of two schemas"""
        return (
            (self.field_names() == other.field_names()) and
            (self.field_types() == other.field_types()) and
            (self.field_metadata() == other.field_metadata())
        )

    def _pprint_impl(self, indent, str_buffer):
        raise NotImplementedError('Field is an abstract class.')

    def __repr__(self):
        str_buffer = StringIO()
        self._pprint_impl(0, str_buffer)
        contents = str_buffer.getvalue()
        str_buffer.close()
        return contents


class List(Field):
    """Represents a variable-length list.

    Values of a list can also be complex fields such as Lists and Structs.
    In addition to the fields exposed by its `values` field, a List exposes an
    additional `lengths` field, which will contain the size of each list under
    the parent domain.
    """

    __slots__: Sequence[str] = ("lengths", "_items")

    def __init__(self, values, lengths_blob=None):
        if isinstance(lengths_blob, Field):
            assert isinstance(lengths_blob, Scalar)
            self.lengths = _normalize_field(lengths_blob)
        else:
            self.lengths = Scalar(np.int32, lengths_blob)
        self._items = _normalize_field(values)
        self.lengths._set_parent(self, 0)
        self._items._set_parent(self, 1)
        super(List, self).__init__([self.lengths, self._items])

    def field_names(self):
        value_fields = self._items.field_names()
        return (
            ['lengths'] + [_join_field_name('values', v) for v in value_fields]
        )

    def field_types(self):
        return self.lengths.field_types() + self._items.field_types()

    def field_metadata(self):
        return self.lengths.field_metadata() + self._items.field_metadata()

    def field_blobs(self):
        return self.lengths.field_blobs() + self._items.field_blobs()

    def all_scalars(self):
        return self.lengths.all_scalars() + self._items.all_scalars()

    def has_blobs(self):
        return self.lengths.has_blobs() and self._items.has_blobs()

    def clone(self, keep_blobs=True):
        return type(self)(
            _normalize_field(self._items, keep_blobs=keep_blobs),
            _normalize_field(self.lengths, keep_blobs=keep_blobs)
        )

    def _pprint_impl(self, indent, str_buffer):
        str_buffer.write('  ' * indent + "List(\n")
        str_buffer.write('  ' * (indent + 1) + "lengths=\n")
        self.lengths._pprint_impl(indent=indent + 2, str_buffer=str_buffer)
        str_buffer.write('  ' * (indent + 1) + "_items=\n")
        self._items._pprint_impl(indent=indent + 2, str_buffer=str_buffer)
        str_buffer.write('  ' * indent + ")\n")

    def __getattr__(self, item):
        """If the value of this list is a struct,
        allow to introspect directly into its fields."""
        if item.startswith('__'):
            raise AttributeError(item)
        if isinstance(self._items, Struct):
            return getattr(self._items, item)
        elif item == 'value' or item == 'items':
            return self._items
        else:
            raise AttributeError('Field not found in list: %s.' % item)

    def __getitem__(self, item):
        names = item.split(FIELD_SEPARATOR, 1)

        if len(names) == 1:
            if item == 'lengths':
                return self.lengths
            elif item == 'values':
                return self._items
        else:
            if names[0] == 'values':
                return self._items[names[1]]
        raise KeyError('Field not found in list: %s.' % item)


class ListWithEvicted(List):
    """
    This class is similar with List, but containing extra field evicted_values for
    LRU Hashing.
    """

    __slots__: Sequence[str] = ("_evicted_values",)

    def __init__(self, values, lengths_blob=None, evicted_values=None):
        if isinstance(evicted_values, Field):
            assert isinstance(evicted_values, Scalar)
            self._evicted_values = _normalize_field(evicted_values)
        else:
            self._evicted_values = Scalar(np.int64, evicted_values)
        super(ListWithEvicted, self).__init__(values, lengths_blob=lengths_blob)

    def field_names(self):
        value_fields = self._items.field_names()
        return (
            ['lengths'] + [_join_field_name('values', v) for v in value_fields] + ["_evicted_values"]
        )

    def field_types(self):
        return self.lengths.field_types() + self._items.field_types() + self._evicted_values.field_types()

    def field_metadata(self):
        return self.lengths.field_metadata() + self._items.field_metadata() + self._evicted_values.field_metadata()

    def field_blobs(self):
        return self.lengths.field_blobs() + self._items.field_blobs() + self._evicted_values.field_blobs()

    def all_scalars(self):
        return self.lengths.all_scalars() + self._items.all_scalars() + self._evicted_values.all_scalars()

    def has_blobs(self):
        return self.lengths.has_blobs() and self._items.has_blobs() + self._evicted_values.has_blobs()

    def clone(self, keep_blobs=True):
        return type(self)(
            _normalize_field(self._items, keep_blobs=keep_blobs),
            _normalize_field(self.lengths, keep_blobs=keep_blobs),
            _normalize_field(self._evicted_values, keep_blobs=keep_blobs)
        )

    def _pprint_impl(self, indent, str_buffer):
        str_buffer.write('  ' * indent + "ListWithEvicted(\n")
        str_buffer.write('  ' * (indent + 1) + "lengths=\n")
        self.lengths._pprint_impl(indent=indent + 2, str_buffer=str_buffer)
        str_buffer.write('  ' * (indent + 1) + "_items=\n")
        self._items._pprint_impl(indent=indent + 2, str_buffer=str_buffer)
        str_buffer.write('  ' * (indent + 1) + "_evicted_values=\n")
        self._evicted_values._pprint_impl(indent=indent + 2, str_buffer=str_buffer)
        str_buffer.write('  ' * indent + ")\n")


    def __getattr__(self, item):
        """If the value of this list is a struct,
        allow to introspect directly into its fields."""
        if item.startswith('__'):
            raise AttributeError(item)
        if item == "_evicted_values":
            return self._evicted_values
        if isinstance(self._items, Struct):
            return getattr(self._items, item)
        elif item == 'value' or item == 'items':
            return self._items
        else:
            raise AttributeError('Field not found in list: %s.' % item)

    def __getitem__(self, item):
        names = item.split(FIELD_SEPARATOR, 1)

        if len(names) == 1:
            if item == 'lengths':
                return self.lengths
            elif item == 'values':
                return self._items
            elif item == '_evicted_values':
                return self._evicted_values
        else:
            if names[0] == 'values':
                return self._items[names[1]]
        raise KeyError('Field not found in list: %s.' % item)


class Struct(Field):
    """Represents a named list of fields sharing the same domain.
    """

    __slots__: Sequence[str] = ("fields", "_frozen")

    def __init__(self, *fields):
        """ fields is a list of tuples in format of (name, field). The name is
        a string of nested name, e.g., `a`, `a:b`, `a:b:c`. For example

        Struct(
          ('a', Scalar()),
          ('b:c', Scalar()),
          ('b:d:e', Scalar()),
          ('b', Struct(
            ('f', Scalar()),
          )),
        )

        is equal to

        Struct(
          ('a', Scalar()),
          ('b', Struct(
            ('c', Scalar()),
            ('d', Struct(('e', Scalar()))),
            ('f', Scalar()),
          )),
        )
        """
        for field in fields:
            assert len(field) == 2
            assert field[0], 'Field names cannot be empty'
            assert field[0] != 'lengths', (
                'Struct cannot contain a field named `lengths`.'
            )
        fields = [(name, _normalize_field(field)) for name, field in fields]
        self.fields = OrderedDict()
        for name, field in fields:
            if FIELD_SEPARATOR in name:
                name, field = self._struct_from_nested_name(name, field)
            if name not in self.fields:
                self.fields[name] = field
                continue
            if (
                    not isinstance(field, Struct) or
                    not isinstance(self.fields[name], Struct)
            ):
                raise ValueError('Duplicate field name: %s' % name)
            self.fields[name] = self.fields[name] + field
        for id, (_, field) in enumerate(viewitems(self.fields)):
            field._set_parent(self, id)
        super(Struct, self).__init__(viewvalues(self.fields))
        self._frozen = True

    def _struct_from_nested_name(self, nested_name, field):
        def create_internal(nested_name, field):
            names = nested_name.split(FIELD_SEPARATOR, 1)
            if len(names) == 1:
                added_field = field
            else:
                added_field = create_internal(names[1], field)
            return Struct((names[0], added_field))

        names = nested_name.split(FIELD_SEPARATOR, 1)
        assert len(names) >= 2
        return names[0], create_internal(names[1], field)

    def get_children(self):
        return list(viewitems(self.fields))

    def field_names(self):
        names = []
        for name, field in viewitems(self.fields):
            names += [_join_field_name(name, f) for f in field.field_names()]
        return names

    def field_types(self):
        types = []
        for _, field in viewitems(self.fields):
            types += field.field_types()
        return types

    def field_metadata(self):
        metadata = []
        for _, field in viewitems(self.fields):
            metadata += field.field_metadata()
        return metadata

    def field_blobs(self):
        blobs = []
        for _, field in viewitems(self.fields):
            blobs += field.field_blobs()
        return blobs

    def all_scalars(self):
        scalars = []
        for _, field in viewitems(self.fields):
            scalars += field.all_scalars()
        return scalars

    def has_blobs(self):
        return all(field.has_blobs() for field in viewvalues(self.fields))

    def clone(self, keep_blobs=True):
        normalized_fields = [
            (k, _normalize_field(v, keep_blobs=keep_blobs))
            for k, v in viewitems(self.fields)
        ]
        return type(self)(*normalized_fields)

    def _get_field_by_nested_name(self, nested_name):
        names = nested_name.split(FIELD_SEPARATOR, 1)
        field = self.fields.get(names[0], None)

        if field is None:
            return None

        if len(names) == 1:
            return field

        try:
            return field[names[1]]
        except (KeyError, TypeError):
            return None

    def _pprint_impl(self, indent, str_buffer):
        str_buffer.write('  ' * indent + "Struct( \n")
        for name, field in viewitems(self.fields):
            str_buffer.write('  ' * (indent + 1) + "{}=".format(name) + "\n")
            field._pprint_impl(indent=indent + 2, str_buffer=str_buffer)
        str_buffer.write('  ' * indent + ") \n")

    def __contains__(self, item):
        field = self._get_field_by_nested_name(item)
        return field is not None

    def __len__(self):
        return len(self.fields)

    def __getitem__(self, item):
        """
        item can be a tuple or list of ints or strings, or a single
        int or string. String item is a nested field name, e.g., "a", "a:b",
        "a:b:c". Int item is the index of a field at the first level of the
        Struct.
        """
        if isinstance(item, list) or isinstance(item, tuple):
            keys = list(viewkeys(self.fields))
            return Struct(
                * [
                    (
                        keys[k]
                        if isinstance(k, int) else k, self[k]
                    ) for k in item
                ]
            )
        elif isinstance(item, int):
            return next(islice(viewvalues(self.fields), item, None))
        else:
            field = self._get_field_by_nested_name(item)
            if field is None:
                raise KeyError('field "%s" not found' % (item))
            return field

    def get(self, item, default_value):
        """
        similar to python's dictionary get method, return field of item if found
        (i.e. self.item is valid) or otherwise return default_value

        it's a syntax suger of python's builtin getattr method
        """
        return getattr(self, item, default_value)

    def __getattr__(self, item):
        if item.startswith('__'):
            raise AttributeError(item)
        try:
            return super(Struct, self).__getattribute__("fields")[item]
        except KeyError:
            raise AttributeError(item)

    def __setattr__(self, key, value):
        # Disable setting attributes after initialization to prevent false
        # impression of being able to overwrite a field.
        # Allowing setting internal states mainly so that _parent can be set
        # post initialization.
        if getattr(self, '_frozen', None) and not key.startswith('_'):
            raise TypeError('Struct.__setattr__() is disabled after __init__()')
        super(Struct, self).__setattr__(key, value)

    def __add__(self, other):
        """
        Allows to merge fields of two schema.Struct using '+' operator.
        If two Struct have common field names, the merge is conducted
        recursively. Here are examples:

        Example 1
        s1 = Struct(('a', Scalar()))
        s2 = Struct(('b', Scalar()))
        s1 + s2 == Struct(
            ('a', Scalar()),
            ('b', Scalar()),
        )

        Example 2
        s1 = Struct(
            ('a', Scalar()),
            ('b', Struct(('c', Scalar()))),
        )
        s2 = Struct(('b', Struct(('d', Scalar()))))
        s1 + s2 == Struct(
            ('a', Scalar()),
            ('b', Struct(
                ('c', Scalar()),
                ('d', Scalar()),
            )),
        )
        """
        if not isinstance(other, Struct):
            return NotImplemented

        children = OrderedDict(self.get_children())
        for name, right_field in other.get_children():
            if name not in children:
                children[name] = right_field
                continue
            left_field = children[name]
            if not (isinstance(left_field, Struct) and isinstance(right_field, Struct)):
                raise TypeError(
                    "Type of left_field, " + str(type(left_field)) +
                    ", and type of right_field, " +
                    str(type(right_field)) +
                    ", must both the Struct to allow merging of the field, " + name)
            children[name] = left_field + right_field

        return Struct(*(viewitems(children)))

    def __sub__(self, other):
        """
        Allows to remove common fields of two schema.Struct from self by
        using '-' operator. If two Struct have common field names, the
        removal is conducted recursively. If a child struct has no fields
        inside, it will be removed from its parent. Here are examples:

        Example 1
        s1 = Struct(
            ('a', Scalar()),
            ('b', Scalar()),
        )
        s2 = Struct(('a', Scalar()))
        s1 - s2 == Struct(('b', Scalar()))

        Example 2
        s1 = Struct(
            ('b', Struct(
                ('c', Scalar()),
                ('d', Scalar()),
            ))
        )
        s2 = Struct(
            ('b', Struct(('c', Scalar()))),
        )
        s1 - s2 == Struct(
            ('b', Struct(
                ('d', Scalar()),
            )),
        )

        Example 3
        s1 = Struct(
            ('a', Scalar()),
            ('b', Struct(
                ('d', Scalar()),
            ))
        )
        s2 = Struct(
            ('b', Struct(
                ('c', Scalar())
                ('d', Scalar())
            )),
        )
        s1 - s2 == Struct(
            ('a', Scalar()),
        )
        """
        if not isinstance(other, Struct):
            return NotImplemented

        children = OrderedDict(self.get_children())
        for name, right_field in other.get_children():
            if name in children:
                left_field = children[name]
                if type(left_field) == type(right_field):
                    if isinstance(left_field, Struct):
                        child = left_field - right_field
                        if child.get_children():
                            children[name] = child
                            continue
                    children.pop(name)
                else:
                    raise TypeError(
                        "Type of left_field, " + str(type(left_field)) +
                        ", is not the same as that of right_field, " +
                        str(type(right_field)) +
                        ", yet they have the same field name, " + name)
        return Struct(*(children.items()))


class Scalar(Field):
    """Represents a typed scalar or tensor of fixed shape.

    A Scalar is a leaf in a schema tree, translating to exactly one tensor in
    the dataset's underlying storage.

    Usually, the tensor storing the actual values of this field is a 1D tensor,
    representing a series of values in its domain. It is possible however to
    have higher rank values stored as a Scalar, as long as all entries have
    the same shape.

    E.g.:

        Scalar(np.float64)

            Scalar field of type float64. Caffe2 will expect readers and
            datasets to expose it as a 1D tensor of doubles (vector), where
            the size of the vector is determined by this fields' domain.

        Scalar((np.int32, 5))

            Tensor field of type int32. Caffe2 will expect readers and
            datasets to implement it as a 2D tensor (matrix) of shape (L, 5),
            where L is determined by this fields' domain.

        Scalar((str, (10, 20)))

            Tensor field of type str. Caffe2 will expect readers and
            datasets to implement it as a 3D tensor of shape (L, 10, 20),
            where L is determined by this fields' domain.

    If the field type is unknown at construction time, call Scalar(), that will
    default to np.void as its dtype.

    It is an error to pass a structured dtype to Scalar, since it would contain
    more than one field. Instead, use from_dtype, which will construct
    a nested `Struct` field reflecting the given dtype's structure.

    A Scalar can also contain a blob, which represents the value of this
    Scalar. A blob can be either a numpy.ndarray, in which case it contain the
    actual contents of the Scalar, or a BlobReference, which represents a
    blob living in a caffe2 Workspace. If blob of different types are passed,
    a conversion to numpy.ndarray is attempted.
    """

    __slots__: Sequence[str] = ("_metadata", "dtype", "_original_dtype", "_blob")

    def __init__(self, dtype=None, blob=None, metadata=None):
        self._metadata = None
        self.set(dtype, blob, metadata, unsafe=True)
        super(Scalar, self).__init__([])

    def field_names(self):
        return ['']

    def field_type(self):
        return self.dtype

    def field_types(self):
        return [self.dtype]

    def field_metadata(self):
        return [self._metadata]

    def has_blobs(self):
        return self._blob is not None

    def field_blobs(self):
        assert self._blob is not None, 'Value is not set for this field.'
        return [self._blob]

    def all_scalars(self):
        return [self]

    def clone(self, keep_blobs=True):
        return Scalar(
            dtype=self._original_dtype,
            blob=self._blob if keep_blobs else None,
            metadata=self._metadata
        )

    def get(self):
        """Gets the current blob of this Scalar field."""
        assert self._blob is not None, 'Value is not set for this field.'
        return self._blob

    def __call__(self):
        """Shortcut for self.get()"""
        return self.get()

    @property
    def metadata(self):
        return self._metadata

    def set_metadata(self, value):
        assert isinstance(value, Metadata), \
            'metadata must be Metadata, got {}'.format(type(value))
        self._metadata = value
        self._validate_metadata()

    def _validate_metadata(self):
        if self._metadata is None:
            return
        if (self._metadata.categorical_limit is not None and
                self.dtype is not None):
            assert np.issubdtype(self.dtype, np.integer), \
                "`categorical_limit` can be specified only in integral " + \
                "fields but got {}".format(self.dtype)

    def set_value(self, blob, throw_on_type_mismatch=False, unsafe=False):
        """Sets only the blob field still validating the existing dtype"""
        if self.dtype.base != np.void and throw_on_type_mismatch:
            assert isinstance(blob, np.ndarray), "Got {!r}".format(blob)
            assert blob.dtype.base == self.dtype.base, (
                "Expected {}, got {}".format(self.dtype.base, blob.dtype.base))
        self.set(dtype=self._original_dtype, blob=blob, unsafe=unsafe)

    def set(self, dtype=None, blob=None, metadata=None, unsafe=False):
        """Set the type and/or blob of this scalar. See __init__ for details.

        Args:
            dtype: can be any numpy type. If not provided and `blob` is
                   provided, it will be inferred. If no argument is provided,
                   this Scalar will be of type np.void.
            blob:  if provided, can be either a BlobReference or a
                   numpy.ndarray. If a value of different type is passed,
                   a conversion to numpy.ndarray is attempted. Strings aren't
                   accepted, since they can be ambiguous. If you want to pass
                   a string, to either BlobReference(blob) or np.array(blob).
            metadata: optional instance of Metadata, if provided overrides
                      the metadata information of the scalar
        """
        if not unsafe:
            logger.warning(
                "Scalar should be considered immutable. Only call Scalar.set() "
                "on newly created Scalar with unsafe=True. This will become an "
                "error soon."
            )
        if blob is not None and isinstance(blob, basestring):
            raise ValueError(
                'Passing str blob to Scalar.set() is ambiguous. '
                'Do either set(blob=np.array(blob)) or '
                'set(blob=BlobReference(blob))'
            )

        self._original_dtype = dtype
        # Numpy will collapse a shape of 1 into an unindexed data array (shape = ()),
        # which betrays the docstring of this class (which expects shape = (1,)).
        # >>> import numpy as np
        # >> np.dtype((np.int32, 1))
        # dtype('int32')
        # >>> np.dtype((np.int32, 5))
        # dtype(('<i4', (5,)))
        if dtype is not None and isinstance(dtype, tuple) and dtype[1] == 1:
            dtype = (dtype[0], (1,))
        if dtype is not None:
            if isinstance(dtype, tuple) and dtype[0] == np.void:
                raise TypeError(
                    "Cannot set the Scalar with type {} for blob {}."
                    "If this blob is the output of some operation, "
                    "please verify the input of that operation has "
                    "proper type.".format(dtype, blob)
                )
            dtype = np.dtype(dtype)
        # If blob is not None and it is not a BlobReference, we assume that
        # it is actual tensor data, so we will try to cast it to a numpy array.
        if blob is not None and not isinstance(blob, BlobReference):
            preserve_shape = isinstance(blob, np.ndarray)
            if dtype is not None and dtype != np.void:
                blob = np.array(blob, dtype=dtype.base)
                # if array is empty we may need to reshape a little
                if blob.size == 0 and not preserve_shape:
                    blob = blob.reshape((0, ) + dtype.shape)
            else:
                assert isinstance(blob, np.ndarray), (
                    'Invalid blob type: %s' % str(type(blob)))

            # reshape scalars into 1D arrays
            # TODO(azzolini): figure out better way of representing this
            if len(blob.shape) == 0 and not preserve_shape:
                blob = blob.reshape((1, ))

            # infer inner shape from the blob given
            # TODO(dzhulgakov): tweak this to make it work with PackedStruct
            if (len(blob.shape) > 1 and dtype is not None and
                    dtype.base != np.void):
                dtype = np.dtype((dtype.base, blob.shape[1:]))
        # if we were still unable to infer the dtype
        if dtype is None:
            dtype = np.dtype(np.void)
        assert not dtype.fields, (
            'Cannot create Scalar with a structured dtype. ' +
            'Use from_dtype instead.'
        )
        self.dtype = dtype
        self._blob = blob
        if metadata is not None:
            self.set_metadata(metadata)
        self._validate_metadata()

    def set_type(self, dtype):
        self._original_dtype = dtype
        if dtype is not None:
            self.dtype = np.dtype(dtype)
        else:
            self.dtype = np.dtype(np.void)
        self._validate_metadata()

    def _pprint_impl(self, indent, str_buffer):
        str_buffer.write('  ' * (indent) +
            'Scalar({!r}, {!r}, {!r})'.format(
            self.dtype, self._blob, self._metadata) + "\n")

    def id(self):
        """
        Return the zero-indexed position of this scalar field in its schema.
        Used in order to index into the field_blob list returned by readers or
        accepted by writers.
        """
        return self._child_base_id()


def Map(
    keys,
    values,
    keys_name='keys',
    values_name='values',
    lengths_blob=None
):
    """A map is a List of Struct containing keys and values fields.
    Optionally, you can provide custom name for the key and value fields.
    """
    return List(
        Struct((keys_name, keys), (values_name, values)),
        lengths_blob=lengths_blob
    )

def MapWithEvicted(
    keys,
    values,
    keys_name='keys',
    values_name='values',
    lengths_blob=None,
    evicted_values=None
):
    """A map with extra field evicted_values
    """
    return ListWithEvicted(
        Struct((keys_name, keys), (values_name, values)),
        lengths_blob=lengths_blob,
        evicted_values=evicted_values
    )


def NamedTuple(name_prefix, *fields):
    return Struct(* [('%s_%d' % (name_prefix, i), field)
                     for i, field in enumerate(fields)])


def Tuple(*fields):
    """
    Creates a Struct with default, sequential, field names of given types.
    """
    return NamedTuple('field', *fields)


def RawTuple(num_fields, name_prefix='field'):
    """
    Creates a tuple of `num_field` untyped scalars.
    """
    assert isinstance(num_fields, int)
    assert num_fields >= 0
    return NamedTuple(name_prefix, *([np.void] * num_fields))


def from_dtype(dtype, _outer_shape=()):
    """Constructs a Caffe2 schema from the given numpy's dtype.

    Numpy supports scalar, array-like and structured datatypes, as long as
    all the shapes are fixed. This function breaks down the given dtype into
    a Caffe2 schema containing `Struct` and `Scalar` types.

    Fields containing byte offsets are not currently supported.
    """
    if not isinstance(dtype, np.dtype):
        # wrap into a ndtype
        shape = _outer_shape
        dtype = np.dtype((dtype, _outer_shape))
    else:
        # concatenate shapes if necessary
        shape = _outer_shape + dtype.shape
        if shape != dtype.shape:
            dtype = np.dtype((dtype.base, shape))

    if not dtype.fields:
        return Scalar(dtype)

    struct_fields = []
    for name, (fdtype, offset) in dtype.fields:
        assert offset == 0, ('Fields with byte offsets are not supported.')
        struct_fields += (name, from_dtype(fdtype, _outer_shape=shape))
    return Struct(*struct_fields)


class _SchemaNode(object):
    """This is a private class used to represent a Schema Node"""

    __slots__: Sequence[str] = ("name", "children", "type_str", "field")

    def __init__(self, name, type_str=''):
        self.name = name
        self.children = []
        self.type_str = type_str
        self.field = None

    def add_child(self, name, type_str=''):
        for child in self.children:
            if child.name == name and child.type_str == type_str:
                return child
        child = _SchemaNode(name, type_str)
        self.children.append(child)
        return child

    def get_field(self):

        list_names = ['lengths', 'values']
        map_names = ['lengths', 'keys', 'values']

        if len(self.children) == 0 or self.field is not None:
            if self.field is None:
                return Struct()
            else:
                return self.field

        child_names = []
        for child in self.children:
            child_names.append(child.name)

        if (set(child_names) == set(list_names)):
            for child in self.children:
                if child.name == 'values':
                    values_field = child.get_field()
                else:
                    lengths_field = child.get_field()
            self.field = List(
                values_field,
                lengths_blob=lengths_field
            )
            self.type_str = "List"
            return self.field
        elif (set(child_names) == set(map_names)):
            for child in self.children:
                if child.name == 'keys':
                    key_field = child.get_field()
                elif child.name == 'values':
                    values_field = child.get_field()
                else:
                    lengths_field = child.get_field()
            self.field = Map(
                key_field,
                values_field,
                lengths_blob=lengths_field
            )
            self.type_str = "Map"
            return self.field

        else:
            struct_fields = []
            for child in self.children:
                struct_fields.append((child.name, child.get_field()))

            self.field = Struct(*struct_fields)
            self.type_str = "Struct"
            return self.field

    def print_recursively(self):
        for child in self.children:
            child.print_recursively()
        logger.info("Printing node: Name and type")
        logger.info(self.name)
        logger.info(self.type_str)


def from_column_list(
    col_names, col_types=None,
    col_blobs=None, col_metadata=None
):
    """
    Given a list of names, types, and optionally values, construct a Schema.
    """
    if col_types is None:
        col_types = [None] * len(col_names)
    if col_metadata is None:
        col_metadata = [None] * len(col_names)
    if col_blobs is None:
        col_blobs = [None] * len(col_names)
    assert len(col_names) == len(col_types), (
        'col_names and col_types must have the same length.'
    )
    assert len(col_names) == len(col_metadata), (
        'col_names and col_metadata must have the same length.'
    )
    assert len(col_names) == len(col_blobs), (
        'col_names and col_blobs must have the same length.'
    )
    root = _SchemaNode('root', 'Struct')
    for col_name, col_type, col_blob, col_metadata in zip(
        col_names, col_types, col_blobs, col_metadata
    ):
        columns = col_name.split(FIELD_SEPARATOR)
        current = root
        for i in range(len(columns)):
            name = columns[i]
            type_str = ''
            field = None
            if i == len(columns) - 1:
                type_str = col_type
                field = Scalar(
                    dtype=col_type,
                    blob=col_blob,
                    metadata=col_metadata
                )
            next = current.add_child(name, type_str)
            if field is not None:
                next.field = field
            current = next

    return root.get_field()


def from_blob_list(schema, values, throw_on_type_mismatch=False):
    """
    Create a schema that clones the given schema, but containing the given
    list of values.
    """
    assert isinstance(schema, Field), 'Argument `schema` must be a Field.'
    if isinstance(values, BlobReference):
        values = [values]
    record = schema.clone_schema()
    scalars = record.all_scalars()
    assert len(scalars) == len(values), (
        'Values must have %d elements, got %d.' % (len(scalars), len(values))
    )
    for scalar, value in zip(scalars, values):
        scalar.set_value(value, throw_on_type_mismatch, unsafe=True)
    return record


def as_record(value):
    if isinstance(value, Field):
        return value
    elif isinstance(value, list) or isinstance(value, tuple):
        is_field_list = all(
            f is tuple and len(f) == 2 and isinstance(f[0], basestring)
            for f in value
        )
        if is_field_list:
            return Struct(* [(k, as_record(v)) for k, v in value])
        else:
            return Tuple(* [as_record(f) for f in value])
    elif isinstance(value, dict):
        return Struct(* [(k, as_record(v)) for k, v in viewitems(value)])
    else:
        return _normalize_field(value)


def FetchRecord(blob_record, ws=None, throw_on_type_mismatch=False):
    """
    Given a record containing BlobReferences, return a new record with same
    schema, containing numpy arrays, fetched from the current active workspace.
    """

    def fetch(v):
        if ws is None:
            return workspace.FetchBlob(str(v))
        else:
            return ws.blobs[str(v)].fetch()

    assert isinstance(blob_record, Field)
    field_blobs = blob_record.field_blobs()
    assert all(isinstance(v, BlobReference) for v in field_blobs)
    field_arrays = [fetch(value) for value in field_blobs]
    return from_blob_list(blob_record, field_arrays, throw_on_type_mismatch)


def FeedRecord(blob_record, arrays, ws=None):
    """
    Given a Record containing blob_references and arrays, which is either
    a list of numpy arrays or a Record containing numpy arrays, feeds the
    record to the current workspace.
    """

    def feed(b, v):
        if ws is None:
            workspace.FeedBlob(str(b), v)
        else:
            ws.create_blob(str(b))
            ws.blobs[str(b)].feed(v)
    assert isinstance(blob_record, Field)
    field_blobs = blob_record.field_blobs()
    assert all(isinstance(v, BlobReference) for v in field_blobs)
    if isinstance(arrays, Field):
        # TODO: check schema
        arrays = arrays.field_blobs()
    assert len(arrays) == len(field_blobs), (
        'Values must contain exactly %d ndarrays.' % len(field_blobs)
    )
    for blob, array in zip(field_blobs, arrays):
        feed(blob, array)


def NewRecord(net, schema):
    """
    Given a record of np.arrays, create a BlobReference for each one of them,
    returning a record containing BlobReferences. The name of each returned blob
    is NextScopedBlob(field_name), which guarantees unique name in the current
    net. Use NameScope explicitly to avoid name conflictions between different
    nets.
    """
    if isinstance(schema, Scalar):
        result = schema.clone()
        result.set_value(
            blob=net.NextScopedBlob('unnamed_scalar'),
            unsafe=True,
        )
        return result

    assert isinstance(schema, Field), 'Record must be a schema.Field instance.'
    blob_refs = [
        net.NextScopedBlob(prefix=name)
        for name in schema.field_names()
    ]
    return from_blob_list(schema, blob_refs)


def ConstRecord(net, array_record):
    """
    Given a record of arrays, returns a record of blobs,
    initialized with net.Const.
    """
    blob_record = NewRecord(net, array_record)
    for blob, array in zip(
        blob_record.field_blobs(), array_record.field_blobs()
    ):
        net.Const(array, blob)
    return blob_record


def InitEmptyRecord(net, schema_or_record, enforce_types=False):
    if not schema_or_record.has_blobs():
        record = NewRecord(net, schema_or_record)
    else:
        record = schema_or_record

    for blob_type, blob in zip(record.field_types(), record.field_blobs()):
        try:
            data_type = data_type_for_dtype(blob_type)
            shape = [0] + list(blob_type.shape)
            net.ConstantFill([], blob, shape=shape, dtype=data_type)
        except TypeError:
            logger.warning("Blob {} has type error".format(blob))
            # If data_type_for_dtype doesn't know how to resolve given numpy
            # type to core.DataType, that function can throw type error (for
            # example that would happen for cases of unknown types such as
            # np.void). This is not a problem for cases when the record if going
            # to be overwritten by some operator later, though it might be an
            # issue for type/shape inference.
            if enforce_types:
                raise
            # If we don't enforce types for all items we'll create a blob with
            # the default ConstantFill (FLOAT, no shape)
            net.ConstantFill([], blob, shape=[0])

    return record


_DATA_TYPE_FOR_DTYPE = [
    (np.str, core.DataType.STRING),
    (np.float16, core.DataType.FLOAT16),
    (np.float32, core.DataType.FLOAT),
    (np.float64, core.DataType.DOUBLE),
    (np.bool, core.DataType.BOOL),
    (np.int8, core.DataType.INT8),
    (np.int16, core.DataType.INT16),
    (np.int32, core.DataType.INT32),
    (np.int64, core.DataType.INT64),
    (np.uint8, core.DataType.UINT8),
    (np.uint16, core.DataType.UINT16),
]


def is_schema_subset(schema, original_schema):
    # TODO add more checks
    return set(schema.field_names()).issubset(
        set(original_schema.field_names()))

def equal_schemas(schema,
                  original_schema,
                  check_field_names=True,
                  check_field_types=True,
                  check_field_metas=False):
    assert isinstance(schema, Field)
    assert isinstance(original_schema, Field)

    if check_field_names and (
            schema.field_names() != original_schema.field_names()):
        return False
    if check_field_types and (
            schema.field_types() != original_schema.field_types()):
        return False
    if check_field_metas and (
            schema.field_metadata() != original_schema.field_metadata()):
        return False

    return True


def schema_check(schema, previous=None):
    record = as_record(schema)
    if previous is not None:
        assert equal_schemas(schema, previous)
    return record


def data_type_for_dtype(dtype):
    for np_type, dt in _DATA_TYPE_FOR_DTYPE:
        if dtype.base == np_type:
            return dt
    raise TypeError('Unknown dtype: ' + str(dtype.base))


def dtype_for_core_type(core_type):
    for np_type, dt in _DATA_TYPE_FOR_DTYPE:
        if dt == core_type:
            return np_type
    raise TypeError('Unknown core type: ' + str(core_type))


def attach_metadata_to_scalars(field, metadata):
    for f in field.all_scalars():
        f.set_metadata(metadata)