1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
from caffe2.python import core, workspace
from caffe2.python.test_util import TestCase
import numpy as np
class TestSparseToDenseMask(TestCase):
def test_sparse_to_dense_mask_float(self):
op = core.CreateOperator(
'SparseToDenseMask',
['indices', 'values', 'default', 'lengths'],
['output'],
mask=[999999999, 2, 6])
workspace.FeedBlob(
'indices',
np.array([2, 4, 6, 1, 2, 999999999, 2], dtype=np.int32))
workspace.FeedBlob(
'values',
np.array([1, 2, 3, 4, 5, 6, 7], dtype=np.float))
workspace.FeedBlob('default', np.array(-1, dtype=np.float))
workspace.FeedBlob('lengths', np.array([3, 4], dtype=np.int32))
workspace.RunOperatorOnce(op)
output = workspace.FetchBlob('output')
expected = np.array([[-1, 1, 3], [6, 7, -1]], dtype=np.float)
self.assertEqual(output.shape, expected.shape)
np.testing.assert_array_equal(output, expected)
def test_sparse_to_dense_mask_invalid_inputs(self):
op = core.CreateOperator(
'SparseToDenseMask',
['indices', 'values', 'default', 'lengths'],
['output'],
mask=[999999999, 2],
max_skipped_indices=3)
workspace.FeedBlob(
'indices',
np.array([2000000000000, 999999999, 2, 3, 4, 5], dtype=np.int32))
workspace.FeedBlob(
'values',
np.array([1, 2, 3, 4, 5, 6], dtype=np.float))
workspace.FeedBlob('default', np.array(-1, dtype=np.float))
workspace.FeedBlob('lengths', np.array([6], dtype=np.int32))
try:
workspace.RunOperatorOnce(op)
except RuntimeError:
self.fail("Exception raised with only one negative index")
# 3 invalid inputs should throw.
workspace.FeedBlob(
'indices',
np.array([-1, 1, 2, 3, 4, 5], dtype=np.int32))
with self.assertRaises(RuntimeError):
workspace.RunOperatorMultiple(op, 3)
def test_sparse_to_dense_mask_subtensor(self):
op = core.CreateOperator(
'SparseToDenseMask',
['indices', 'values', 'default', 'lengths'],
['output'],
mask=[999999999, 2, 888, 6])
workspace.FeedBlob(
'indices',
np.array([2, 4, 6, 999999999, 2], dtype=np.int64))
workspace.FeedBlob(
'values',
np.array([[[1, -1]], [[2, -2]], [[3, -3]], [[4, -4]], [[5, -5]]],
dtype=np.float))
workspace.FeedBlob('default', np.array([[-1, 0]], dtype=np.float))
workspace.FeedBlob('lengths', np.array([2, 3], dtype=np.int32))
workspace.RunOperatorOnce(op)
output = workspace.FetchBlob('output')
expected = np.array([
[[[-1, 0]], [[1, -1]], [[-1, 0]], [[-1, 0]]],
[[[4, -4]], [[5, -5]], [[-1, 0]], [[3, -3]]]], dtype=np.float)
self.assertEqual(output.shape, expected.shape)
np.testing.assert_array_equal(output, expected)
def test_sparse_to_dense_mask_string(self):
op = core.CreateOperator(
'SparseToDenseMask',
['indices', 'values', 'default', 'lengths'],
['output'],
mask=[999999999, 2, 6])
workspace.FeedBlob(
'indices',
np.array([2, 4, 6, 1, 2, 999999999, 2], dtype=np.int32))
workspace.FeedBlob(
'values',
np.array(['1', '2', '3', '4', '5', '6', '7'], dtype='S'))
workspace.FeedBlob('default', np.array('-1', dtype='S'))
workspace.FeedBlob('lengths', np.array([3, 4], dtype=np.int32))
workspace.RunOperatorOnce(op)
output = workspace.FetchBlob('output')
expected =\
np.array([['-1', '1', '3'], ['6', '7', '-1']], dtype='S')
self.assertEqual(output.shape, expected.shape)
np.testing.assert_array_equal(output, expected)
def test_sparse_to_dense_mask_empty_lengths(self):
op = core.CreateOperator(
'SparseToDenseMask',
['indices', 'values', 'default'],
['output'],
mask=[1, 2, 6])
workspace.FeedBlob('indices', np.array([2, 4, 6], dtype=np.int32))
workspace.FeedBlob('values', np.array([1, 2, 3], dtype=np.float))
workspace.FeedBlob('default', np.array(-1, dtype=np.float))
workspace.RunOperatorOnce(op)
output = workspace.FetchBlob('output')
expected = np.array([-1, 1, 3], dtype=np.float)
self.assertEqual(output.shape, expected.shape)
np.testing.assert_array_equal(output, expected)
def test_sparse_to_dense_mask_no_lengths(self):
op = core.CreateOperator(
'SparseToDenseMask',
['indices', 'values', 'default'],
['output'],
mask=[1, 2, 6])
workspace.FeedBlob('indices', np.array([2, 4, 6], dtype=np.int32))
workspace.FeedBlob('values', np.array([1, 2, 3], dtype=np.float))
workspace.FeedBlob('default', np.array(-1, dtype=np.float))
workspace.RunOperatorOnce(op)
output = workspace.FetchBlob('output')
expected = np.array([-1, 1, 3], dtype=np.float)
self.assertEqual(output.shape, expected.shape)
np.testing.assert_array_equal(output, expected)
def test_sparse_to_dense_mask_presence_mask(self):
op = core.CreateOperator(
'SparseToDenseMask',
['indices', 'values', 'default', 'lengths'],
['output', 'presence_mask'],
mask=[11, 12],
return_presence_mask=True)
workspace.FeedBlob('indices', np.array([11, 12, 13], dtype=np.int32))
workspace.FeedBlob('values', np.array([11, 12, 13], dtype=np.float))
workspace.FeedBlob('default', np.array(-1, dtype=np.float))
workspace.FeedBlob('lengths', np.array([1, 2], dtype=np.int32))
workspace.RunOperatorOnce(op)
output = workspace.FetchBlob('output')
presence_mask = workspace.FetchBlob('presence_mask')
expected_output = np.array([[11, -1], [-1, 12]], dtype=np.float)
expected_presence_mask = np.array(
[[True, False], [False, True]],
dtype=np.bool)
self.assertEqual(output.shape, expected_output.shape)
np.testing.assert_array_equal(output, expected_output)
self.assertEqual(presence_mask.shape, expected_presence_mask.shape)
np.testing.assert_array_equal(presence_mask, expected_presence_mask)
|