1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
from caffe2.python import (
brew, cnn, core, workspace, data_parallel_model,
timeout_guard, model_helper, optimizer)
from caffe2.python.test_util import TestCase
import caffe2.python.models.resnet as resnet
from caffe2.python.modeling.initializers import Initializer
from caffe2.python import convnet_benchmarks as cb
from caffe2.python import hypothesis_test_util as hu
import time
import numpy as np
CI_MAX_EXAMPLES = 2
CI_TIMEOUT = 600
def executor_test_settings(func):
if hu.is_sandcastle() or hu.is_travis():
return hu.settings(
max_examples=CI_MAX_EXAMPLES,
deadline=CI_TIMEOUT * 1000 # deadline is in ms
)(func)
else:
return func
def gen_test_resnet50(_order, _cudnn_ws):
model = cnn.CNNModelHelper(
order="NCHW",
name="resnet_50_test",
cudnn_exhaustive_search=True,
)
data = model.net.AddExternalInput("data")
label = model.net.AddExternalInput("label")
(_softmax, loss) = resnet.create_resnet50(
model,
data,
num_input_channels=3,
num_labels=1000,
label=label,
is_test=False,
)
return model, 227
def conv_model_generators():
return {
'AlexNet': cb.AlexNet,
'OverFeat': cb.OverFeat,
'VGGA': cb.VGGA,
'Inception': cb.Inception,
'MLP': cb.MLP,
'Resnet50': gen_test_resnet50,
}
def executor_test_model_names():
if hu.is_sandcastle() or hu.is_travis():
return ["MLP"]
else:
return sorted(conv_model_generators().keys())
def build_conv_model(model_name, batch_size):
model_gen_map = conv_model_generators()
assert model_name in model_gen_map, "Model " + model_name + " not found"
model, input_size = model_gen_map[model_name]("NCHW", None)
input_shape = [batch_size, 3, input_size, input_size]
if model_name == "MLP":
input_shape = [batch_size, input_size]
model.param_init_net.GaussianFill(
[],
"data",
shape=input_shape,
mean=0.0,
std=1.0
)
model.param_init_net.UniformIntFill(
[],
"label",
shape=[batch_size, ],
min=0,
max=999
)
model.AddGradientOperators(["loss"])
ITER = brew.iter(model, "iter")
LR = model.net.LearningRate(
ITER, "LR", base_lr=-1e-8, policy="step", stepsize=10000, gamma=0.999)
ONE = model.param_init_net.ConstantFill([], "ONE", shape=[1], value=1.0)
for param in model.params:
param_grad = model.param_to_grad[param]
model.net.WeightedSum([param, ONE, param_grad, LR], param)
return model
def build_resnet50_dataparallel_model(
num_gpus,
batch_size,
epoch_size,
cudnn_workspace_limit_mb=64,
num_channels=3,
num_labels=1000,
weight_decay=1e-4,
base_learning_rate=0.1,
image_size=227,
use_cpu=False):
batch_per_device = batch_size // num_gpus
train_arg_scope = {
'order': 'NCHW',
'use_cudnn': True,
'cudnn_exhaustive_search': False,
'ws_nbytes_limit': (cudnn_workspace_limit_mb * 1024 * 1024),
'deterministic': True,
}
train_model = model_helper.ModelHelper(
name="test_resnet50", arg_scope=train_arg_scope
)
def create_resnet50_model_ops(model, loss_scale):
with brew.arg_scope([brew.conv, brew.fc],
WeightInitializer=Initializer,
BiasInitializer=Initializer,
enable_tensor_core=0):
pred = resnet.create_resnet50(
model,
"data",
num_input_channels=num_channels,
num_labels=num_labels,
no_bias=True,
no_loss=True,
)
softmax, loss = model.SoftmaxWithLoss([pred, 'label'],
['softmax', 'loss'])
loss = model.Scale(loss, scale=loss_scale)
brew.accuracy(model, [softmax, "label"], "accuracy")
return [loss]
def add_optimizer(model):
stepsz = int(30 * epoch_size / batch_size)
optimizer.add_weight_decay(model, weight_decay)
opt = optimizer.build_multi_precision_sgd(
model,
base_learning_rate,
momentum=0.9,
nesterov=1,
policy="step",
stepsize=stepsz,
gamma=0.1
)
return opt
def add_image_input(model):
model.param_init_net.GaussianFill(
[],
["data"],
shape=[batch_per_device, 3, image_size, image_size],
dtype='float',
)
model.param_init_net.ConstantFill(
[],
["label"],
shape=[batch_per_device],
value=1,
dtype=core.DataType.INT32,
)
def add_post_sync_ops(model):
for param_info in model.GetOptimizationParamInfo(model.GetParams()):
if param_info.blob_copy is not None:
model.param_init_net.HalfToFloat(
param_info.blob,
param_info.blob_copy[core.DataType.FLOAT])
# Create parallelized model
data_parallel_model.Parallelize(
train_model,
input_builder_fun=add_image_input,
forward_pass_builder_fun=create_resnet50_model_ops,
optimizer_builder_fun=add_optimizer,
post_sync_builder_fun=add_post_sync_ops,
devices=list(range(num_gpus)),
rendezvous=None,
optimize_gradient_memory=True,
cpu_device=use_cpu,
shared_model=use_cpu,
)
return train_model
def run_resnet50_epoch(train_model, batch_size, epoch_size, skip_first_n_iter=0):
epoch_iters = int(epoch_size / batch_size)
prefix = "{}_{}".format(
train_model._device_prefix,
train_model._devices[0])
train_time = 0.0
train_examples = 0
for i in range(epoch_iters):
timeout = 600.0 if i == 0 else 60.0
with timeout_guard.CompleteInTimeOrDie(timeout):
t1 = time.time()
workspace.RunNet(train_model.net.Proto().name)
t2 = time.time()
dt = t2 - t1
if i >= skip_first_n_iter:
train_time += dt
train_examples += batch_size
fmt = "Finished iteration {}/{} ({:.2f} images/sec)"
print(fmt.format(i + 1, epoch_iters, batch_size / dt))
accuracy = workspace.FetchBlob(prefix + '/accuracy')
loss = workspace.FetchBlob(prefix + '/loss')
assert loss < 40, "Exploded gradients"
return (
train_examples,
train_time,
accuracy, loss)
class ExecutorTestBase(TestCase):
def compare_executors(self, model, ref_executor, test_executor, model_run_func):
model.Proto().type = ref_executor
model.param_init_net.set_rand_seed(seed=0xCAFFE2)
model.net.set_rand_seed(seed=0xCAFFE2)
workspace.ResetWorkspace()
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net)
model_run_func()
ref_ws = {str(k): workspace.FetchBlob(k) for k in workspace.Blobs()}
ref_ws = {k: v for k, v in ref_ws.items() if type(v) is np.ndarray}
workspace.ResetWorkspace()
workspace.RunNetOnce(model.param_init_net)
model.Proto().type = test_executor
workspace.CreateNet(model.net, overwrite=True)
model_run_func()
test_ws = {str(k): workspace.FetchBlob(k) for k in workspace.Blobs()}
test_ws = {k: v for k, v in test_ws.items() if type(v) is np.ndarray}
for blob_name, ref_val in ref_ws.items():
self.assertTrue(
blob_name in test_ws,
"Blob {} not found in {} run".format(blob_name, test_executor))
val = test_ws[blob_name]
np.testing.assert_array_equal(
val, ref_val,
"Blob {} differs in {} run".format(blob_name, test_executor))
|