File: gpu_context_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (31 lines) | stat: -rw-r--r-- 1,121 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31





import unittest

import torch
from caffe2.python import core, workspace

# This is a standalone test that doesn't use test_util as we're testing
# initialization and thus we should be the ones calling GlobalInit
@unittest.skipIf(not workspace.has_cuda_support,
                 "THC pool testing is obscure and doesn't work on HIP yet")
class TestGPUInit(unittest.TestCase):
    def testTHCAllocator(self):
        cuda_or_hip = 'hip' if workspace.has_hip_support else 'cuda'
        flag = '--caffe2_{}_memory_pool=thc'.format(cuda_or_hip)
        core.GlobalInit(['caffe2', flag])
        # just run one operator
        # it's importantant to not call anything here from Torch API
        # even torch.cuda.memory_allocated would initialize CUDA context
        workspace.RunOperatorOnce(core.CreateOperator(
            'ConstantFill', [], ["x"], shape=[5, 5], value=1.0,
            device_option=core.DeviceOption(workspace.GpuDeviceType)
        ))
        # make sure we actually used THC allocator
        self.assertGreater(torch.cuda.memory_allocated(), 0)

if __name__ == '__main__':
    unittest.main()