File: test_trt.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (279 lines) | stat: -rw-r--r-- 11,318 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279





from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
import onnx
import onnx.defs
from onnx.helper import make_node, make_graph, make_tensor_value_info, make_model
from onnx.backend.base import namedtupledict
from caffe2.python.models.download import ModelDownloader
import caffe2.python.onnx.backend as c2
from caffe2.python.onnx.workspace import Workspace
from caffe2.python.trt.transform import convert_onnx_model_to_trt_op, transform_caffe2_net
from caffe2.python.onnx.tests.test_utils import TestCase
import numpy as np
import os.path
import time
import unittest
import tarfile
import tempfile
import shutil
from six.moves.urllib.request import urlretrieve

def _print_net(net):
    for i in net.external_input:
        print("Input: {}".format(i))
    for i in net.external_output:
        print("Output: {}".format(i))
    for op in net.op:
        print("Op {}".format(op.type))
        for x in op.input:
            print("  input: {}".format(x))
        for y in op.output:
            print("  output: {}".format(y))


def _base_url(opset_version):
    return 'https://s3.amazonaws.com/download.onnx/models/opset_{}'.format(opset_version)

# TODO: This is copied from https://github.com/onnx/onnx/blob/master/onnx/backend/test/runner/__init__.py. Maybe we should
# expose a model retrival API from ONNX
def _download_onnx_model(model_name, opset_version):
    onnx_home = os.path.expanduser(os.getenv('ONNX_HOME', os.path.join('~', '.onnx')))
    models_dir = os.getenv('ONNX_MODELS',
                           os.path.join(onnx_home, 'models'))
    model_dir = os.path.join(models_dir, model_name)
    if not os.path.exists(os.path.join(model_dir, 'model.onnx')):
        if os.path.exists(model_dir):
            bi = 0
            while True:
                dest = '{}.old.{}'.format(model_dir, bi)
                if os.path.exists(dest):
                    bi += 1
                    continue
                shutil.move(model_dir, dest)
                break
        os.makedirs(model_dir)

        # On Windows, NamedTemporaryFile can not be opened for a
        # second time
        url = '{}/{}.tar.gz'.format(_base_url(opset_version), model_name)
        download_file = tempfile.NamedTemporaryFile(delete=False)
        try:
            download_file.close()
            print('Start downloading model {} from {}'.format(
                model_name, url))
            urlretrieve(url, download_file.name)
            print('Done')
            with tarfile.open(download_file.name) as t:
                t.extractall(models_dir)
        except Exception as e:
            print('Failed to prepare data for model {}: {}'.format(
                model_name, e))
            raise
        finally:
            os.remove(download_file.name)
    return model_dir

class TensorRTOpTest(TestCase):
    def setUp(self):
        self.opset_version = onnx.defs.onnx_opset_version()

    def _test_relu_graph(self, X, batch_size, trt_max_batch_size):
        node_def = make_node("Relu", ["X"], ["Y"])
        Y_c2 = c2.run_node(node_def, {"X": X})
        graph_def = make_graph(
            [node_def],
            name="test",
            inputs=[make_tensor_value_info("X", onnx.TensorProto.FLOAT, [batch_size, 1, 3, 2])],
            outputs=[make_tensor_value_info("Y", onnx.TensorProto.FLOAT, [batch_size, 1, 3, 2])])
        model_def = make_model(graph_def, producer_name='relu-test')
        op_outputs = [x.name for x in model_def.graph.output]
        op = convert_onnx_model_to_trt_op(model_def, max_batch_size=trt_max_batch_size)
        device_option = core.DeviceOption(caffe2_pb2.CUDA, 0)
        op.device_option.CopyFrom(device_option)
        Y_trt = None
        ws = Workspace()
        with core.DeviceScope(device_option):
            ws.FeedBlob("X", X)
            ws.RunOperatorsOnce([op])
            output_values = [ws.FetchBlob(name) for name in op_outputs]
            Y_trt = namedtupledict('Outputs', op_outputs)(*output_values)
        np.testing.assert_almost_equal(Y_c2, Y_trt)


    @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
    def test_relu_graph_simple(self):
        X = np.random.randn(1, 1, 3, 2).astype(np.float32)
        self._test_relu_graph(X, 1, 50)


    @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
    def test_relu_graph_big_batch(self):
        X = np.random.randn(52, 1, 3, 2).astype(np.float32)
        self._test_relu_graph(X, 52, 50)

    def _test_onnx_importer(self, model_name, data_input_index, opset_version=onnx.defs.onnx_opset_version()):
        model_dir = _download_onnx_model(model_name, opset_version)
        model_def = onnx.load(os.path.join(model_dir, 'model.onnx'))
        input_blob_dims = [int(x.dim_value) for x in model_def.graph.input[data_input_index].type.tensor_type.shape.dim]
        op_inputs = [x.name for x in model_def.graph.input]
        op_outputs = [x.name for x in model_def.graph.output]
        print("{}".format(op_inputs))
        data = np.random.randn(*input_blob_dims).astype(np.float32)
        Y_c2 = c2.run_model(model_def, {op_inputs[data_input_index]: data})
        op = convert_onnx_model_to_trt_op(model_def, verbosity=3)
        device_option = core.DeviceOption(caffe2_pb2.CUDA, 0)
        op.device_option.CopyFrom(device_option)
        Y_trt = None
        ws = Workspace()
        with core.DeviceScope(device_option):
            ws.FeedBlob(op_inputs[data_input_index], data)
            if opset_version >= 5:
                # Some newer models from ONNX Zoo come with pre-set "data_0" input
                ws.FeedBlob("data_0", data)
            ws.RunOperatorsOnce([op])
            output_values = [ws.FetchBlob(name) for name in op_outputs]
            Y_trt = namedtupledict('Outputs', op_outputs)(*output_values)
        np.testing.assert_allclose(Y_c2, Y_trt, rtol=1e-3)

    @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
    def test_resnet50(self):
        self._test_onnx_importer('resnet50', 0, 9)

    @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
    def test_bvlc_alexnet(self):
        self._test_onnx_importer('bvlc_alexnet', 0, 9)

    @unittest.skip("Until fixing Unsqueeze op")
    def test_densenet121(self):
        self._test_onnx_importer('densenet121', -1, 3)

    @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
    def test_inception_v1(self):
        self._test_onnx_importer('inception_v1', -3, 9)

    @unittest.skip("Until fixing Unsqueeze op")
    def test_inception_v2(self):
        self._test_onnx_importer('inception_v2', 0, 9)

    @unittest.skip('Need to revisit our ChannelShuffle exporter to avoid generating 5D tensor')
    def test_shufflenet(self):
        self._test_onnx_importer('shufflenet', 0)

    @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
    def test_squeezenet(self):
        self._test_onnx_importer('squeezenet', -1, 9)

    @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
    def test_vgg16(self):
        self._test_onnx_importer('vgg16', 0, 9)

    @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
    def test_vgg19(self):
        self._test_onnx_importer('vgg19', -2, 9)


class TensorRTTransformTest(TestCase):
    def setUp(self):
        self.model_downloader = ModelDownloader()

    def _add_head_tail(self, pred_net, new_head, new_tail):
        orig_head = pred_net.external_input[0]
        orig_tail = pred_net.external_output[0]

        # Add head
        head = caffe2_pb2.OperatorDef()
        head.type = "Copy"
        head.input.append(new_head)
        head.output.append(orig_head)
        dummy = caffe2_pb2.NetDef()
        dummy.op.extend(pred_net.op)
        del pred_net.op[:]
        pred_net.op.extend([head])
        pred_net.op.extend(dummy.op)
        pred_net.external_input[0] = new_head

        # Add tail
        tail = caffe2_pb2.OperatorDef()
        tail.type = "Copy"
        tail.input.append(orig_tail)
        tail.output.append(new_tail)
        pred_net.op.extend([tail])
        pred_net.external_output[0] = new_tail

    @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
    def test_resnet50_core(self):
        N = 2
        warmup = 20
        repeat = 100
        print("Batch size: {}, repeat inference {} times, warmup {} times".format(N, repeat, warmup))
        init_net, pred_net, _ = self.model_downloader.get_c2_model('resnet50')
        self._add_head_tail(pred_net, 'real_data', 'real_softmax')
        input_blob_dims = (N, 3, 224, 224)
        input_name = "real_data"

        device_option = core.DeviceOption(caffe2_pb2.CUDA, 0)
        init_net.device_option.CopyFrom(device_option)
        pred_net.device_option.CopyFrom(device_option)
        for op in pred_net.op:
            op.device_option.CopyFrom(device_option)
            op.engine = 'CUDNN'
        net_outputs = pred_net.external_output
        Y_c2 = None
        data =  np.random.randn(*input_blob_dims).astype(np.float32)
        c2_time = 1
        workspace.SwitchWorkspace("gpu_test", True)
        with core.DeviceScope(device_option):
            workspace.FeedBlob(input_name, data)
            workspace.RunNetOnce(init_net)
            workspace.CreateNet(pred_net)
            for _ in range(warmup):
                workspace.RunNet(pred_net.name)
            start = time.time()
            for _ in range(repeat):
                workspace.RunNet(pred_net.name)
            end = time.time()
            c2_time = end - start
            output_values = [workspace.FetchBlob(name) for name in net_outputs]
            Y_c2 = namedtupledict('Outputs', net_outputs)(*output_values)
        workspace.ResetWorkspace()

        # Fill the workspace with the weights
        with core.DeviceScope(device_option):
            workspace.RunNetOnce(init_net)

        # Cut the graph
        start = time.time()
        pred_net_cut = transform_caffe2_net(pred_net,
                                            {input_name: input_blob_dims},
                                            build_serializable_op=False)
        del init_net, pred_net
        pred_net_cut.device_option.CopyFrom(device_option)
        for op in pred_net_cut.op:
            op.device_option.CopyFrom(device_option)
        #_print_net(pred_net_cut)

        Y_trt = None
        input_name = pred_net_cut.external_input[0]
        print("C2 runtime: {}s".format(c2_time))
        with core.DeviceScope(device_option):
            workspace.FeedBlob(input_name, data)
            workspace.CreateNet(pred_net_cut)
            end = time.time()
            print("Conversion time: {:.2f}s".format(end -start))

            for _ in range(warmup):
                workspace.RunNet(pred_net_cut.name)
            start = time.time()
            for _ in range(repeat):
                workspace.RunNet(pred_net_cut.name)
            end = time.time()
            trt_time = end - start
            print("TRT runtime: {}s, improvement: {}%".format(trt_time, (c2_time-trt_time)/c2_time*100))
            output_values = [workspace.FetchBlob(name) for name in net_outputs]
            Y_trt = namedtupledict('Outputs', net_outputs)(*output_values)
        np.testing.assert_allclose(Y_c2, Y_trt, rtol=1e-3)