1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
import onnx
import onnx.defs
from onnx.helper import make_node, make_graph, make_tensor_value_info, make_model
from onnx.backend.base import namedtupledict
from caffe2.python.models.download import ModelDownloader
import caffe2.python.onnx.backend as c2
from caffe2.python.onnx.workspace import Workspace
from caffe2.python.trt.transform import convert_onnx_model_to_trt_op, transform_caffe2_net
from caffe2.python.onnx.tests.test_utils import TestCase
import numpy as np
import os.path
import time
import unittest
import tarfile
import tempfile
import shutil
from six.moves.urllib.request import urlretrieve
def _print_net(net):
for i in net.external_input:
print("Input: {}".format(i))
for i in net.external_output:
print("Output: {}".format(i))
for op in net.op:
print("Op {}".format(op.type))
for x in op.input:
print(" input: {}".format(x))
for y in op.output:
print(" output: {}".format(y))
def _base_url(opset_version):
return 'https://s3.amazonaws.com/download.onnx/models/opset_{}'.format(opset_version)
# TODO: This is copied from https://github.com/onnx/onnx/blob/master/onnx/backend/test/runner/__init__.py. Maybe we should
# expose a model retrival API from ONNX
def _download_onnx_model(model_name, opset_version):
onnx_home = os.path.expanduser(os.getenv('ONNX_HOME', os.path.join('~', '.onnx')))
models_dir = os.getenv('ONNX_MODELS',
os.path.join(onnx_home, 'models'))
model_dir = os.path.join(models_dir, model_name)
if not os.path.exists(os.path.join(model_dir, 'model.onnx')):
if os.path.exists(model_dir):
bi = 0
while True:
dest = '{}.old.{}'.format(model_dir, bi)
if os.path.exists(dest):
bi += 1
continue
shutil.move(model_dir, dest)
break
os.makedirs(model_dir)
# On Windows, NamedTemporaryFile can not be opened for a
# second time
url = '{}/{}.tar.gz'.format(_base_url(opset_version), model_name)
download_file = tempfile.NamedTemporaryFile(delete=False)
try:
download_file.close()
print('Start downloading model {} from {}'.format(
model_name, url))
urlretrieve(url, download_file.name)
print('Done')
with tarfile.open(download_file.name) as t:
t.extractall(models_dir)
except Exception as e:
print('Failed to prepare data for model {}: {}'.format(
model_name, e))
raise
finally:
os.remove(download_file.name)
return model_dir
class TensorRTOpTest(TestCase):
def setUp(self):
self.opset_version = onnx.defs.onnx_opset_version()
def _test_relu_graph(self, X, batch_size, trt_max_batch_size):
node_def = make_node("Relu", ["X"], ["Y"])
Y_c2 = c2.run_node(node_def, {"X": X})
graph_def = make_graph(
[node_def],
name="test",
inputs=[make_tensor_value_info("X", onnx.TensorProto.FLOAT, [batch_size, 1, 3, 2])],
outputs=[make_tensor_value_info("Y", onnx.TensorProto.FLOAT, [batch_size, 1, 3, 2])])
model_def = make_model(graph_def, producer_name='relu-test')
op_outputs = [x.name for x in model_def.graph.output]
op = convert_onnx_model_to_trt_op(model_def, max_batch_size=trt_max_batch_size)
device_option = core.DeviceOption(caffe2_pb2.CUDA, 0)
op.device_option.CopyFrom(device_option)
Y_trt = None
ws = Workspace()
with core.DeviceScope(device_option):
ws.FeedBlob("X", X)
ws.RunOperatorsOnce([op])
output_values = [ws.FetchBlob(name) for name in op_outputs]
Y_trt = namedtupledict('Outputs', op_outputs)(*output_values)
np.testing.assert_almost_equal(Y_c2, Y_trt)
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
def test_relu_graph_simple(self):
X = np.random.randn(1, 1, 3, 2).astype(np.float32)
self._test_relu_graph(X, 1, 50)
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
def test_relu_graph_big_batch(self):
X = np.random.randn(52, 1, 3, 2).astype(np.float32)
self._test_relu_graph(X, 52, 50)
def _test_onnx_importer(self, model_name, data_input_index, opset_version=onnx.defs.onnx_opset_version()):
model_dir = _download_onnx_model(model_name, opset_version)
model_def = onnx.load(os.path.join(model_dir, 'model.onnx'))
input_blob_dims = [int(x.dim_value) for x in model_def.graph.input[data_input_index].type.tensor_type.shape.dim]
op_inputs = [x.name for x in model_def.graph.input]
op_outputs = [x.name for x in model_def.graph.output]
print("{}".format(op_inputs))
data = np.random.randn(*input_blob_dims).astype(np.float32)
Y_c2 = c2.run_model(model_def, {op_inputs[data_input_index]: data})
op = convert_onnx_model_to_trt_op(model_def, verbosity=3)
device_option = core.DeviceOption(caffe2_pb2.CUDA, 0)
op.device_option.CopyFrom(device_option)
Y_trt = None
ws = Workspace()
with core.DeviceScope(device_option):
ws.FeedBlob(op_inputs[data_input_index], data)
if opset_version >= 5:
# Some newer models from ONNX Zoo come with pre-set "data_0" input
ws.FeedBlob("data_0", data)
ws.RunOperatorsOnce([op])
output_values = [ws.FetchBlob(name) for name in op_outputs]
Y_trt = namedtupledict('Outputs', op_outputs)(*output_values)
np.testing.assert_allclose(Y_c2, Y_trt, rtol=1e-3)
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
def test_resnet50(self):
self._test_onnx_importer('resnet50', 0, 9)
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
def test_bvlc_alexnet(self):
self._test_onnx_importer('bvlc_alexnet', 0, 9)
@unittest.skip("Until fixing Unsqueeze op")
def test_densenet121(self):
self._test_onnx_importer('densenet121', -1, 3)
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
def test_inception_v1(self):
self._test_onnx_importer('inception_v1', -3, 9)
@unittest.skip("Until fixing Unsqueeze op")
def test_inception_v2(self):
self._test_onnx_importer('inception_v2', 0, 9)
@unittest.skip('Need to revisit our ChannelShuffle exporter to avoid generating 5D tensor')
def test_shufflenet(self):
self._test_onnx_importer('shufflenet', 0)
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
def test_squeezenet(self):
self._test_onnx_importer('squeezenet', -1, 9)
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
def test_vgg16(self):
self._test_onnx_importer('vgg16', 0, 9)
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
def test_vgg19(self):
self._test_onnx_importer('vgg19', -2, 9)
class TensorRTTransformTest(TestCase):
def setUp(self):
self.model_downloader = ModelDownloader()
def _add_head_tail(self, pred_net, new_head, new_tail):
orig_head = pred_net.external_input[0]
orig_tail = pred_net.external_output[0]
# Add head
head = caffe2_pb2.OperatorDef()
head.type = "Copy"
head.input.append(new_head)
head.output.append(orig_head)
dummy = caffe2_pb2.NetDef()
dummy.op.extend(pred_net.op)
del pred_net.op[:]
pred_net.op.extend([head])
pred_net.op.extend(dummy.op)
pred_net.external_input[0] = new_head
# Add tail
tail = caffe2_pb2.OperatorDef()
tail.type = "Copy"
tail.input.append(orig_tail)
tail.output.append(new_tail)
pred_net.op.extend([tail])
pred_net.external_output[0] = new_tail
@unittest.skipIf(not workspace.C.use_trt, "No TensortRT support")
def test_resnet50_core(self):
N = 2
warmup = 20
repeat = 100
print("Batch size: {}, repeat inference {} times, warmup {} times".format(N, repeat, warmup))
init_net, pred_net, _ = self.model_downloader.get_c2_model('resnet50')
self._add_head_tail(pred_net, 'real_data', 'real_softmax')
input_blob_dims = (N, 3, 224, 224)
input_name = "real_data"
device_option = core.DeviceOption(caffe2_pb2.CUDA, 0)
init_net.device_option.CopyFrom(device_option)
pred_net.device_option.CopyFrom(device_option)
for op in pred_net.op:
op.device_option.CopyFrom(device_option)
op.engine = 'CUDNN'
net_outputs = pred_net.external_output
Y_c2 = None
data = np.random.randn(*input_blob_dims).astype(np.float32)
c2_time = 1
workspace.SwitchWorkspace("gpu_test", True)
with core.DeviceScope(device_option):
workspace.FeedBlob(input_name, data)
workspace.RunNetOnce(init_net)
workspace.CreateNet(pred_net)
for _ in range(warmup):
workspace.RunNet(pred_net.name)
start = time.time()
for _ in range(repeat):
workspace.RunNet(pred_net.name)
end = time.time()
c2_time = end - start
output_values = [workspace.FetchBlob(name) for name in net_outputs]
Y_c2 = namedtupledict('Outputs', net_outputs)(*output_values)
workspace.ResetWorkspace()
# Fill the workspace with the weights
with core.DeviceScope(device_option):
workspace.RunNetOnce(init_net)
# Cut the graph
start = time.time()
pred_net_cut = transform_caffe2_net(pred_net,
{input_name: input_blob_dims},
build_serializable_op=False)
del init_net, pred_net
pred_net_cut.device_option.CopyFrom(device_option)
for op in pred_net_cut.op:
op.device_option.CopyFrom(device_option)
#_print_net(pred_net_cut)
Y_trt = None
input_name = pred_net_cut.external_input[0]
print("C2 runtime: {}s".format(c2_time))
with core.DeviceScope(device_option):
workspace.FeedBlob(input_name, data)
workspace.CreateNet(pred_net_cut)
end = time.time()
print("Conversion time: {:.2f}s".format(end -start))
for _ in range(warmup):
workspace.RunNet(pred_net_cut.name)
start = time.time()
for _ in range(repeat):
workspace.RunNet(pred_net_cut.name)
end = time.time()
trt_time = end - start
print("TRT runtime: {}s, improvement: {}%".format(trt_time, (c2_time-trt_time)/c2_time*100))
output_values = [workspace.FetchBlob(name) for name in net_outputs]
Y_trt = namedtupledict('Outputs', net_outputs)(*output_values)
np.testing.assert_allclose(Y_c2, Y_trt, rtol=1e-3)
|