1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
# @package utils
# Module caffe2.python.utils
from caffe2.proto import caffe2_pb2
from future.utils import viewitems
from google.protobuf.message import DecodeError, Message
from google.protobuf import text_format
import sys
import collections
import copy
import functools
import numpy as np
from six import integer_types, binary_type, text_type, string_types
OPTIMIZER_ITERATION_NAME = "optimizer_iteration"
OPTIMIZER_ITERATION_LR_NAME = "optimizer_iteration_lr"
ITERATION_MUTEX_NAME = "iteration_mutex"
ITERATION_MUTEX_LR_NAME = "iteration_mutex_lr"
def OpAlmostEqual(op_a, op_b, ignore_fields=None):
'''
Two ops are identical except for each field in the `ignore_fields`.
'''
ignore_fields = ignore_fields or []
if not isinstance(ignore_fields, list):
ignore_fields = [ignore_fields]
assert all(isinstance(f, text_type) for f in ignore_fields), (
'Expect each field is text type, but got {}'.format(ignore_fields))
def clean_op(op):
op = copy.deepcopy(op)
for field in ignore_fields:
if op.HasField(field):
op.ClearField(field)
return op
op_a = clean_op(op_a)
op_b = clean_op(op_b)
return op_a == op_b or str(op_a) == str(op_b)
def CaffeBlobToNumpyArray(blob):
if (blob.num != 0):
# old style caffe blob.
return (np.asarray(blob.data, dtype=np.float32)
.reshape(blob.num, blob.channels, blob.height, blob.width))
else:
# new style caffe blob.
return (np.asarray(blob.data, dtype=np.float32)
.reshape(blob.shape.dim))
def Caffe2TensorToNumpyArray(tensor):
if tensor.data_type == caffe2_pb2.TensorProto.FLOAT:
return np.asarray(
tensor.float_data, dtype=np.float32).reshape(tensor.dims)
elif tensor.data_type == caffe2_pb2.TensorProto.DOUBLE:
return np.asarray(
tensor.double_data, dtype=np.float64).reshape(tensor.dims)
elif tensor.data_type == caffe2_pb2.TensorProto.INT64:
return np.asarray(
tensor.int64_data, dtype=np.int64).reshape(tensor.dims)
elif tensor.data_type == caffe2_pb2.TensorProto.INT32:
return np.asarray(
tensor.int32_data, dtype=np.int).reshape(tensor.dims) # pb.INT32=>np.int use int32_data
elif tensor.data_type == caffe2_pb2.TensorProto.INT16:
return np.asarray(
tensor.int32_data, dtype=np.int16).reshape(tensor.dims) # pb.INT16=>np.int16 use int32_data
elif tensor.data_type == caffe2_pb2.TensorProto.UINT16:
return np.asarray(
tensor.int32_data, dtype=np.uint16).reshape(tensor.dims) # pb.UINT16=>np.uint16 use int32_data
elif tensor.data_type == caffe2_pb2.TensorProto.INT8:
return np.asarray(
tensor.int32_data, dtype=np.int8).reshape(tensor.dims) # pb.INT8=>np.int8 use int32_data
elif tensor.data_type == caffe2_pb2.TensorProto.UINT8:
return np.asarray(
tensor.int32_data, dtype=np.uint8).reshape(tensor.dims) # pb.UINT8=>np.uint8 use int32_data
else:
# TODO: complete the data type: bool, float16, byte, int64, string
raise RuntimeError(
"Tensor data type not supported yet: " + str(tensor.data_type))
def NumpyArrayToCaffe2Tensor(arr, name=None):
tensor = caffe2_pb2.TensorProto()
tensor.dims.extend(arr.shape)
if name:
tensor.name = name
if arr.dtype == np.float32:
tensor.data_type = caffe2_pb2.TensorProto.FLOAT
tensor.float_data.extend(list(arr.flatten().astype(float)))
elif arr.dtype == np.float64:
tensor.data_type = caffe2_pb2.TensorProto.DOUBLE
tensor.double_data.extend(list(arr.flatten().astype(np.float64)))
elif arr.dtype == np.int64:
tensor.data_type = caffe2_pb2.TensorProto.INT64
tensor.int64_data.extend(list(arr.flatten().astype(np.int64)))
elif arr.dtype == np.int or arr.dtype == np.int32:
tensor.data_type = caffe2_pb2.TensorProto.INT32
tensor.int32_data.extend(arr.flatten().astype(np.int).tolist())
elif arr.dtype == np.int16:
tensor.data_type = caffe2_pb2.TensorProto.INT16
tensor.int32_data.extend(list(arr.flatten().astype(np.int16))) # np.int16=>pb.INT16 use int32_data
elif arr.dtype == np.uint16:
tensor.data_type = caffe2_pb2.TensorProto.UINT16
tensor.int32_data.extend(list(arr.flatten().astype(np.uint16))) # np.uint16=>pb.UNIT16 use int32_data
elif arr.dtype == np.int8:
tensor.data_type = caffe2_pb2.TensorProto.INT8
tensor.int32_data.extend(list(arr.flatten().astype(np.int8))) # np.int8=>pb.INT8 use int32_data
elif arr.dtype == np.uint8:
tensor.data_type = caffe2_pb2.TensorProto.UINT8
tensor.int32_data.extend(list(arr.flatten().astype(np.uint8))) # np.uint8=>pb.UNIT8 use int32_data
else:
# TODO: complete the data type: bool, float16, byte, string
raise RuntimeError(
"Numpy data type not supported yet: " + str(arr.dtype))
return tensor
def MakeArgument(key, value):
"""Makes an argument based on the value type."""
argument = caffe2_pb2.Argument()
argument.name = key
iterable = isinstance(value, collections.abc.Iterable)
# Fast tracking common use case where a float32 array of tensor parameters
# needs to be serialized. The entire array is guaranteed to have the same
# dtype, so no per-element checking necessary and no need to convert each
# element separately.
if isinstance(value, np.ndarray) and value.dtype.type is np.float32:
argument.floats.extend(value.flatten().tolist())
return argument
if isinstance(value, np.ndarray):
value = value.flatten().tolist()
elif isinstance(value, np.generic):
# convert numpy scalar to native python type
value = np.asscalar(value)
if type(value) is float:
argument.f = value
elif type(value) in integer_types or type(value) is bool:
# We make a relaxation that a boolean variable will also be stored as
# int.
argument.i = value
elif isinstance(value, binary_type):
argument.s = value
elif isinstance(value, text_type):
argument.s = value.encode('utf-8')
elif isinstance(value, caffe2_pb2.NetDef):
argument.n.CopyFrom(value)
elif isinstance(value, Message):
argument.s = value.SerializeToString()
elif iterable and all(type(v) in [float, np.float_] for v in value):
argument.floats.extend(
v.item() if type(v) is np.float_ else v for v in value
)
elif iterable and all(
type(v) in integer_types or type(v) in [bool, np.int_] for v in value
):
argument.ints.extend(
v.item() if type(v) is np.int_ else v for v in value
)
elif iterable and all(
isinstance(v, binary_type) or isinstance(v, text_type) for v in value
):
argument.strings.extend(
v.encode('utf-8') if isinstance(v, text_type) else v
for v in value
)
elif iterable and all(isinstance(v, caffe2_pb2.NetDef) for v in value):
argument.nets.extend(value)
elif iterable and all(isinstance(v, Message) for v in value):
argument.strings.extend(v.SerializeToString() for v in value)
else:
if iterable:
raise ValueError(
"Unknown iterable argument type: key={} value={}, value "
"type={}[{}]".format(
key, value, type(value), set(type(v) for v in value)
)
)
else:
raise ValueError(
"Unknown argument type: key={} value={}, value type={}".format(
key, value, type(value)
)
)
return argument
def TryReadProtoWithClass(cls, s):
"""Reads a protobuffer with the given proto class.
Inputs:
cls: a protobuffer class.
s: a string of either binary or text protobuffer content.
Outputs:
proto: the protobuffer of cls
Throws:
google.protobuf.message.DecodeError: if we cannot decode the message.
"""
obj = cls()
try:
text_format.Parse(s, obj)
return obj
except (text_format.ParseError, UnicodeDecodeError):
obj.ParseFromString(s)
return obj
def GetContentFromProto(obj, function_map):
"""Gets a specific field from a protocol buffer that matches the given class
"""
for cls, func in viewitems(function_map):
if type(obj) is cls:
return func(obj)
def GetContentFromProtoString(s, function_map):
for cls, func in viewitems(function_map):
try:
obj = TryReadProtoWithClass(cls, s)
return func(obj)
except DecodeError:
continue
else:
raise DecodeError("Cannot find a fit protobuffer class.")
def ConvertProtoToBinary(proto_class, filename, out_filename):
"""Convert a text file of the given protobuf class to binary."""
with open(filename) as f:
proto = TryReadProtoWithClass(proto_class, f.read())
with open(out_filename, 'w') as fid:
fid.write(proto.SerializeToString())
def GetGPUMemoryUsageStats():
"""Get GPU memory usage stats from CUDAContext/HIPContext. This requires flag
--caffe2_gpu_memory_tracking to be enabled"""
from caffe2.python import workspace, core
workspace.RunOperatorOnce(
core.CreateOperator(
"GetGPUMemoryUsage",
[],
["____mem____"],
device_option=core.DeviceOption(workspace.GpuDeviceType, 0),
),
)
b = workspace.FetchBlob("____mem____")
return {
'total_by_gpu': b[0, :],
'max_by_gpu': b[1, :],
'total': np.sum(b[0, :]),
'max_total': np.sum(b[1, :])
}
def ResetBlobs(blobs):
from caffe2.python import workspace, core
workspace.RunOperatorOnce(
core.CreateOperator(
"Free",
list(blobs),
list(blobs),
device_option=core.DeviceOption(caffe2_pb2.CPU),
),
)
class DebugMode(object):
'''
This class allows to drop you into an interactive debugger
if there is an unhandled exception in your python script
Example of usage:
def main():
# your code here
pass
if __name__ == '__main__':
from caffe2.python.utils import DebugMode
DebugMode.run(main)
'''
@classmethod
def run(cls, func):
try:
return func()
except KeyboardInterrupt:
raise
except Exception:
import pdb
print(
'Entering interactive debugger. Type "bt" to print '
'the full stacktrace. Type "help" to see command listing.')
print(sys.exc_info()[1])
print
pdb.post_mortem()
sys.exit(1)
raise
def raiseIfNotEqual(a, b, msg):
if a != b:
raise Exception("{}. {} != {}".format(msg, a, b))
def debug(f):
'''
Use this method to decorate your function with DebugMode's functionality
Example:
@debug
def test_foo(self):
raise Exception("Bar")
'''
@functools.wraps(f)
def wrapper(*args, **kwargs):
def func():
return f(*args, **kwargs)
return DebugMode.run(func)
return wrapper
def BuildUniqueMutexIter(
init_net,
net,
iter=None,
iter_mutex=None,
iter_val=0
):
'''
Often, a mutex guarded iteration counter is needed. This function creates a
mutex iter in the net uniquely (if the iter already existing, it does
nothing)
This function returns the iter blob
'''
iter = iter if iter is not None else OPTIMIZER_ITERATION_NAME
iter_mutex = iter_mutex if iter_mutex is not None else ITERATION_MUTEX_NAME
from caffe2.python import core
if not init_net.BlobIsDefined(iter):
# Add training operators.
with core.DeviceScope(
core.DeviceOption(caffe2_pb2.CPU,
extra_info=["device_type_override:cpu"])
):
iteration = init_net.ConstantFill(
[],
iter,
shape=[1],
value=iter_val,
dtype=core.DataType.INT64,
)
iter_mutex = init_net.CreateMutex([], [iter_mutex])
net.AtomicIter([iter_mutex, iteration], [iteration])
else:
iteration = init_net.GetBlobRef(iter)
return iteration
def EnumClassKeyVals(cls):
# cls can only be derived from object
assert type(cls) == type
# Enum attribute keys are all capitalized and values are strings
enum = {}
for k in dir(cls):
if k == k.upper():
v = getattr(cls, k)
if isinstance(v, string_types):
assert v not in enum.values(), (
"Failed to resolve {} as Enum: "
"duplicate entries {}={}, {}={}".format(
cls, k, v, [key for key in enum if enum[key] == v][0], v
)
)
enum[k] = v
return enum
def ArgsToDict(args):
"""
Convert a list of arguments to a name, value dictionary. Assumes that
each argument has a name. Otherwise, the argument is skipped.
"""
ans = {}
for arg in args:
if not arg.HasField("name"):
continue
for d in arg.DESCRIPTOR.fields:
if d.name == "name":
continue
if d.label == d.LABEL_OPTIONAL and arg.HasField(d.name):
ans[arg.name] = getattr(arg, d.name)
break
elif d.label == d.LABEL_REPEATED:
list_ = getattr(arg, d.name)
if len(list_) > 0:
ans[arg.name] = list_
break
else:
ans[arg.name] = None
return ans
def NHWC2NCHW(tensor):
assert tensor.ndim >= 1
return tensor.transpose((0, tensor.ndim - 1) + tuple(range(1, tensor.ndim - 1)))
def NCHW2NHWC(tensor):
assert tensor.ndim >= 2
return tensor.transpose((0,) + tuple(range(2, tensor.ndim)) + (1,))
|