1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
|
## @package workspace
# Module caffe2.python.workspace
import collections
import contextlib
from google.protobuf.message import Message
from multiprocessing import Process
import os
from collections import defaultdict
import logging
import numpy as np
from past.builtins import basestring
import shutil
import socket
import tempfile
from caffe2.proto import caffe2_pb2
from caffe2.python import scope, utils
from caffe2.python.lazy import TriggerLazyImport
import caffe2.python._import_c_extension as C
logger = logging.getLogger(__name__)
Blobs = C.blobs
ResetBlob = C.reset_blob
CreateBlob = C.create_blob
CurrentWorkspace = C.current_workspace
DeserializeBlob = C.deserialize_blob
GlobalInit = C.global_init
HasBlob = C.has_blob
RegisteredOperators = C.registered_operators
SerializeBlob = C.serialize_blob
SwitchWorkspace = C.switch_workspace
RootFolder = C.root_folder
Workspaces = C.workspaces
BenchmarkNet = C.benchmark_net
BenchmarkNetOnce = C.benchmark_net_once
GetStats = C.get_stats
CreateOfflineTensor = C.create_offline_tensor
operator_tracebacks = defaultdict(dict)
is_asan = C.is_asan
has_fbgemm = C.has_fbgemm
has_cuda_support = C.has_cuda_support
has_hip_support = C.has_hip_support
has_gpu_support = C.has_gpu_support
if has_cuda_support:
GpuDeviceType = caffe2_pb2.CUDA
NumCudaDevices = C.num_cuda_devices
# This is a duplicate of NumCudaDevices. Remove
# NumCudaDevices once replaced everywhere in the code
NumGpuDevices = C.num_cuda_devices
GetCUDAVersion = C.get_cuda_version
GetCuDNNVersion = C.get_cudnn_version
def GetGpuPeerAccessPattern():
return np.asarray(C.get_cuda_peer_access_pattern())
GetDeviceProperties = C.get_device_properties
GetGPUMemoryInfo = C.get_gpu_memory_info
else:
# pyre-fixme[9]: incompatible type assignment
NumCudaDevices = lambda: 0 # noqa
# pyre-fixme[9]: incompatible type assignment
GetCUDAVersion = lambda: 0 # noqa
# pyre-fixme[9]: incompatible type assignment
GetCuDNNVersion = lambda: 0 # noqa
if has_hip_support:
GpuDeviceType = caffe2_pb2.HIP
# pyre-fixme[9]: incompatible type assignment
NumGpuDevices = C.num_hip_devices
GetHIPVersion = C.get_hip_version
def GetGpuPeerAccessPattern():
return np.asarray(C.get_hip_peer_access_pattern())
GetDeviceProperties = C.get_device_properties
GetGPUMemoryInfo = C.get_gpu_memory_info
if not has_gpu_support:
# setting cuda as the default GpuDeviceType as some tests
# like core, scope tests use GpuDeviceType even without gpu support
GpuDeviceType = caffe2_pb2.CUDA
# pyre-fixme[9]: incompatible type assignment
NumGpuDevices = lambda: 0 # noqa
GetDeviceProperties = lambda x: None # noqa
GetGpuPeerAccessPattern = lambda: np.array([]) # noqa
# pyre-fixme[9]: incompatible type assignment
GetGPUMemoryInfo = lambda: None # noqa
IsNUMAEnabled = C.is_numa_enabled
GetNumNUMANodes = C.get_num_numa_nodes
GetBlobNUMANode = C.get_blob_numa_node
GetBlobSizeBytes = C.get_blob_size_bytes
def FillRandomNetworkInputs(net, input_dims, input_types):
C.fill_random_network_inputs(net.Proto().SerializeToString(), input_dims, input_types)
def _GetFreeFlaskPort():
"""Get a free flask port."""
# We will prefer to use 5000. If not, we will then pick a random port.
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
result = sock.connect_ex(('127.0.0.1', 5000))
if result == 0:
return 5000
else:
s = socket.socket()
s.bind(('', 0))
port = s.getsockname()[1]
s.close()
# Race condition: between the interval we close the socket and actually
# start a mint process, another process might have occupied the port. We
# don't do much here as this is mostly for convenience in research
# rather than 24x7 service.
return port
def StartMint(root_folder=None, port=None):
"""Start a mint instance.
TODO(Yangqing): this does not work well under ipython yet. According to
https://github.com/ipython/ipython/issues/5862
writing up some fix is a todo item.
"""
from caffe2.python.mint import app
if root_folder is None:
# Get the root folder from the current workspace
root_folder = C.root_folder()
if port is None:
port = _GetFreeFlaskPort()
process = Process(
target=app.main,
args=(
['-p', str(port), '-r', root_folder],
)
)
process.start()
print('Mint running at http://{}:{}'.format(socket.getfqdn(), port))
return process
def StringifyProto(obj):
"""Stringify a protocol buffer object.
Inputs:
obj: a protocol buffer object, or a Pycaffe2 object that has a Proto()
function.
Outputs:
string: the output protobuf string.
Raises:
AttributeError: if the passed in object does not have the right attribute.
"""
if isinstance(obj, basestring):
return obj
else:
if isinstance(obj, Message):
# First, see if this object is a protocol buffer, which we can
# simply serialize with the SerializeToString() call.
return obj.SerializeToString()
elif hasattr(obj, 'Proto'):
return obj.Proto().SerializeToString()
else:
raise ValueError("Unexpected argument to StringifyProto of type " +
type(obj).__name__)
def ResetWorkspace(root_folder=None):
if root_folder is None:
# Reset the workspace, but keep the current root folder setting.
return C.reset_workspace(C.root_folder())
else:
if not os.path.exists(root_folder):
os.makedirs(root_folder)
return C.reset_workspace(root_folder)
def CreateNet(net, overwrite=False, input_blobs=None):
TriggerLazyImport()
if input_blobs is None:
input_blobs = []
for input_blob in input_blobs:
C.create_blob(input_blob)
return CallWithExceptionIntercept(
C.create_net,
C.Workspace.current._last_failed_op_net_position,
GetNetName(net),
StringifyProto(net), overwrite,
)
def Predictor(init_net, predict_net):
return C.Predictor(StringifyProto(init_net), StringifyProto(predict_net))
def GetOperatorCost(operator, blobs):
return C.get_operator_cost(StringifyProto(operator), blobs)
def RunOperatorOnce(operator):
return C.run_operator_once(StringifyProto(operator))
def RunOperatorMultiple(operator, num_runs):
return C.run_operator_multiple(StringifyProto(operator), num_runs)
def RunOperatorsOnce(operators):
for op in operators:
success = RunOperatorOnce(op)
if not success:
return False
return True
def ClearGlobalNetObserver():
return C.clear_global_net_observer()
def CallWithExceptionIntercept(func, op_id_fetcher, net_name, *args, **kwargs):
try:
return func(*args, **kwargs)
except Exception:
op_id = op_id_fetcher()
net_tracebacks = operator_tracebacks.get(net_name, None)
logger.warning(
'Original python traceback for operator `{}` in network '
'`{}` in exception above (most recent call last):'.format(
op_id, net_name))
if net_tracebacks and op_id in net_tracebacks:
tb = net_tracebacks[op_id]
for line in reversed(tb):
logger.warning(' File "{}", line {}, in {}'.format(
line[0], line[1], line[2]))
raise
def RunNetOnce(net):
return CallWithExceptionIntercept(
C.run_net_once,
C.Workspace.current._last_failed_op_net_position,
GetNetName(net),
StringifyProto(net),
)
def RunNet(name, num_iter=1, allow_fail=False):
"""Runs a given net.
Inputs:
name: the name of the net, or a reference to the net.
num_iter: number of iterations to run
allow_fail: if True, does not assert on net exec failure but returns False
Returns:
True or an exception.
"""
return CallWithExceptionIntercept(
C.run_net,
C.Workspace.current._last_failed_op_net_position,
GetNetName(name),
StringifyNetName(name), num_iter, allow_fail,
)
def RunPlan(plan_or_step):
# TODO(jiayq): refactor core.py/workspace.py to avoid circular deps
import caffe2.python.core as core
if isinstance(plan_or_step, core.ExecutionStep):
plan_or_step = core.Plan(plan_or_step)
return C.run_plan(StringifyProto(plan_or_step))
def RunPlanInBackground(plan_or_step):
# TODO(jiayq): refactor core.py/workspace.py to avoid circular deps
import caffe2.python.core as core
if isinstance(plan_or_step, core.ExecutionStep):
plan_or_step = core.Plan(plan_or_step)
return C.run_plan_in_background(StringifyProto(plan_or_step))
def InferShapesAndTypes(nets, blob_dimensions=None, nets_proto=False,
blob_types=None):
"""Infers the shapes and types for the specified nets.
Inputs:
nets: the list of nets
blob_dimensions (optional): a dictionary of blobs and their dimensions.
If not specified, the workspace blobs are used.
nets_proto (optional): a boolean flag indicating whether the protobuffer
representation is passed to the routine.
Returns:
A tuple of (shapes, types) dictionaries keyed by blob name.
"""
if nets_proto:
net_protos = [StringifyProto(n) for n in nets]
else:
net_protos = [StringifyProto(n.Proto()) for n in nets]
if blob_dimensions is None:
assert blob_types is None
blobdesc_prototxt = C.infer_shapes_and_types_from_workspace(net_protos)
elif blob_types is None:
blobdesc_prototxt = C.infer_shapes_and_types_from_map(
net_protos, blob_dimensions
)
else:
blobdesc_prototxt = C.infer_shapes_and_types_from_map(
net_protos, blob_dimensions, blob_types
)
blobdesc_proto = caffe2_pb2.TensorShapes()
blobdesc_proto.ParseFromString(blobdesc_prototxt)
shapes = {}
types = {}
for ts in blobdesc_proto.shapes:
if not ts.unknown_shape:
shapes[ts.name] = list(ts.dims)
types[ts.name] = ts.data_type
return (shapes, types)
def _StringifyName(name, expected_type):
if isinstance(name, basestring):
return name
assert type(name).__name__ == expected_type, \
"Expected a string or %s" % expected_type
return str(name)
def StringifyBlobName(name):
return _StringifyName(name, "BlobReference")
def StringifyNetName(name):
return _StringifyName(name, "Net")
def GetNetName(net):
if isinstance(net, basestring):
return net
if type(net).__name__ == "Net" or type(net).__name__ == "NetWithShapeInference":
return net.Name()
if isinstance(net, caffe2_pb2.NetDef):
return net.name
raise Exception("Not a Net object: {}".format(str(net)))
def FeedBlob(name, arr, device_option=None):
"""Feeds a blob into the workspace.
Inputs:
name: the name of the blob.
arr: either a TensorProto object or a numpy array object to be fed into
the workspace.
device_option (optional): the device option to feed the data with.
Returns:
True or False, stating whether the feed is successful.
"""
ws = C.Workspace.current
return _Workspace_feed_blob(ws, name, arr, device_option)
def FetchBlobs(names):
"""Fetches a list of blobs from the workspace.
Inputs:
names: list of names of blobs - strings or BlobReferences
Returns:
list of fetched blobs
"""
return [FetchBlob(name) for name in names]
def FetchBlob(name):
"""Fetches a blob from the workspace.
Inputs:
name: the name of the blob - a string or a BlobReference
Returns:
Fetched blob (numpy array or string) if successful
"""
result = C.fetch_blob(StringifyBlobName(name))
if isinstance(result, tuple):
raise TypeError(
"Use FetchInt8Blob to fetch Int8 Blob {}".format(
StringifyBlobName(name)
)
)
return result
def FetchTorch(name):
ws = C.Workspace.current
return ws.blobs[name].to_torch()
Int8Tensor = collections.namedtuple(
'Int8Tensor', ['data', 'scale', 'zero_point']
)
def FetchInt8Blob(name):
"""Fetches an Int8 blob from the workspace. It shared backend implementation
with FetchBlob but it is recommended when fetching Int8 Blobs
Inputs:
name: the name of the Int8 blob - a string or a BlobReference
Returns:
data: int8 numpy array, data
scale: float, fake quantization scale
zero_point: int, fake quantization offset
"""
result = C.fetch_blob(StringifyBlobName(name))
assert isinstance(result, tuple), \
'You are not fetching an Int8Blob {}. Please use FetchBlob'.format(
StringifyBlobName(name))
return Int8Tensor(*result)
def FetchInt8BlobRealVal(name):
"""Fetches an Int8 blob from the workspace and return its real value representation.
Inputs:
name: the name of the Int8 blob - a string or a BlobReference
Returns:
real value representation of int8 numpy array
"""
result = C.fetch_blob(StringifyBlobName(name))
assert isinstance(result, tuple), \
'You are not fetching an Int8Blob {}. Please use FetchBlob'.format(
StringifyBlobName(name))
int8_blob = Int8Tensor(*result)
return (int8_blob.data.astype(np.int32) - int(int8_blob.zero_point)).astype(
np.float32) * int8_blob.scale
def _Workspace_fetch_int8_blob(ws, name):
"""Fetches an Int8 blob from the workspace. It shared backend implementation
with FetchBlob but it is recommended when fetching Int8 Blobs
Inputs:
name: the name of the Int8 blob - a string or a BlobReference
Returns:
data: int8 numpy array, data
scale: float, fake quantization scale
zero_point: int, fake quantization offset
"""
result = ws.fetch_blob(name)
assert isinstance(result, tuple), \
'You are not fetching an Int8Blob {}. Please use fetch_blob'.format(
StringifyBlobName(name))
return Int8Tensor(*result)
C.Workspace.fetch_int8_blob = _Workspace_fetch_int8_blob
def ApplyTransform(transform_key, net):
"""Apply a Transform to a NetDef protobuf object, and returns the new
transformed NetDef.
Inputs:
transform_key: the name of the transform, as it is stored in the registry
net: a NetDef protobuf object
Returns:
Transformed NetDef protobuf object.
"""
transformed_net = caffe2_pb2.NetDef()
transformed_str = C.apply_transform(
str(transform_key).encode('utf-8'),
net.SerializeToString(),
)
transformed_net.ParseFromString(transformed_str)
return transformed_net
def ApplyTransformIfFaster(transform_key, net, init_net, **kwargs):
"""Apply a Transform to a NetDef protobuf object, and returns the new
transformed NetDef, only if it runs faster than the original.
The runs are performed on the current active workspace (gWorkspace).
You should initialize that workspace before making a call to this function.
Inputs:
transform_key: the name of the transform, as it is stored in the registry
net: a NetDef protobuf object
init_net: The net to initialize the workspace.
warmup_runs (optional):
Determines how many times the net is run before testing.
Will be 5 by default.
main_runs (optional):
Determines how many times the net is run during testing.
Will be 10 by default.
improvement_threshold (optional):
Determines the factor which the new net needs to be faster
in order to replace the old. Will be 1.01 by default.
Returns:
Either a Transformed NetDef protobuf object, or the original netdef.
"""
warmup_runs = kwargs['warmup_runs'] if 'warmup_runs' in kwargs else 5
main_runs = kwargs['main_runs'] if 'main_runs' in kwargs else 10
improvement_threshold = kwargs['improvement_threshold'] \
if 'improvement_threshold' in kwargs else 1.01
transformed_net = caffe2_pb2.NetDef()
transformed_str = C.apply_transform_if_faster(
str(transform_key).encode('utf-8'),
net.SerializeToString(),
init_net.SerializeToString(),
warmup_runs,
main_runs,
float(improvement_threshold),
)
transformed_net.ParseFromString(transformed_str)
return transformed_net
def GetNameScope():
"""Return the current namescope string. To be used to fetch blobs"""
return scope.CurrentNameScope()
class _BlobDict(object):
"""Provides python dict compatible way to do fetching and feeding"""
def __getitem__(self, key):
return FetchBlob(key)
def __setitem__(self, key, value):
return FeedBlob(key, value)
def __len__(self):
return len(C.blobs())
def __iter__(self):
return C.blobs().__iter__()
def __contains__(self, item):
return C.has_blob(item)
blobs = _BlobDict()
################################################################################
# Utilities for immediate mode
#
# Caffe2's immediate mode implements the following behavior: between the two
# function calls StartImmediate() and StopImmediate(), for any operator that is
# called through CreateOperator(), we will also run that operator in a workspace
# that is specific to the immediate mode. The user is explicitly expected to
# make sure that these ops have proper inputs and outputs, i.e. one should not
# run an op where an external input is not created or fed.
#
# Users can use FeedImmediate() and FetchImmediate() to interact with blobs
# in the immediate workspace.
#
# Once StopImmediate() is called, all contents in the immediate workspace is
# freed up so one can continue using normal runs.
#
# The immediate mode is solely for debugging purposes and support will be very
# sparse.
################################################################################
_immediate_mode = False
_immediate_workspace_name = "_CAFFE2_IMMEDIATE"
_immediate_root_folder = ''
def IsImmediate():
return _immediate_mode
@contextlib.contextmanager
def WorkspaceGuard(workspace_name):
current = CurrentWorkspace()
SwitchWorkspace(workspace_name, True)
yield
SwitchWorkspace(current)
def StartImmediate(i_know=False):
global _immediate_mode
global _immediate_root_folder
if IsImmediate():
# already in immediate mode. We will kill the previous one
# and start from fresh.
StopImmediate()
_immediate_mode = True
with WorkspaceGuard(_immediate_workspace_name):
_immediate_root_folder = tempfile.mkdtemp()
ResetWorkspace(_immediate_root_folder)
if i_know:
# if the user doesn't want to see the warning message, sure...
return
print("""
Enabling immediate mode in caffe2 python is an EXTREMELY EXPERIMENTAL
feature and may very easily go wrong. This is because Caffe2 uses a
declarative way of defining operators and models, which is essentially
not meant to run things in an interactive way. Read the following carefully
to make sure that you understand the caveats.
(1) You need to make sure that the sequences of operators you create are
actually runnable sequentially. For example, if you create an op that takes
an input X, somewhere earlier you should have already created X.
(2) Caffe2 immediate uses one single workspace, so if the set of operators
you run are intended to be under different workspaces, they will not run.
To create boundaries between such use cases, you can call FinishImmediate()
and StartImmediate() manually to flush out everything no longer needed.
(3) Underlying objects held by the immediate mode may interfere with your
normal run. For example, if there is a leveldb that you opened in immediate
mode and did not close, your main run will fail because leveldb does not
support double opening. Immediate mode may also occupy a lot of memory esp.
on GPUs. Call FinishImmediate() as soon as possible when you no longer
need it.
(4) Immediate is designed to be slow. Every immediate call implicitly
creates a temp operator object, runs it, and destroys the operator. This
slow-speed run is by design to discourage abuse. For most use cases other
than debugging, do NOT turn on immediate mode.
(5) If there is anything FATAL happening in the underlying C++ code, the
immediate mode will immediately (pun intended) cause the runtime to crash.
Thus you should use immediate mode with extra care. If you still would
like to, have fun [https://xkcd.com/149/].
""")
def StopImmediate():
"""Stops an immediate mode run."""
# Phew, that was a dangerous ride.
global _immediate_mode
global _immediate_root_folder
if not IsImmediate():
return
with WorkspaceGuard(_immediate_workspace_name):
ResetWorkspace()
shutil.rmtree(_immediate_root_folder)
_immediate_root_folder = ''
_immediate_mode = False
def ImmediateBlobs():
with WorkspaceGuard(_immediate_workspace_name):
return Blobs()
def RunOperatorImmediate(op):
with WorkspaceGuard(_immediate_workspace_name):
RunOperatorOnce(op)
def FetchImmediate(*args, **kwargs):
with WorkspaceGuard(_immediate_workspace_name):
return FetchBlob(*args, **kwargs)
def FeedImmediate(*args, **kwargs):
with WorkspaceGuard(_immediate_workspace_name):
return FeedBlob(*args, **kwargs)
# C.Workspace methods.
def _Workspace_create_net_with_exception_intercept(ws, net, overwrite=False):
return CallWithExceptionIntercept(
ws._create_net,
ws._last_failed_op_net_position,
GetNetName(net),
StringifyProto(net), overwrite,
)
def _Workspace_run(ws, obj):
if hasattr(obj, 'Proto'):
obj = obj.Proto()
if isinstance(obj, caffe2_pb2.PlanDef):
return ws._run_plan(obj.SerializeToString())
if isinstance(obj, caffe2_pb2.NetDef):
return CallWithExceptionIntercept(
ws._run_net,
ws._last_failed_op_net_position,
GetNetName(obj),
obj.SerializeToString(),
)
# return ws._run_net(obj.SerializeToString())
if isinstance(obj, caffe2_pb2.OperatorDef):
return ws._run_operator(obj.SerializeToString())
raise ValueError(
"Don't know how to do Workspace.run() on {}".format(type(obj)))
def _Workspace_feed_blob(ws, name, arr, device_option=None):
if type(arr) is caffe2_pb2.TensorProto:
arr = utils.Caffe2TensorToNumpyArray(arr)
if type(arr) is np.ndarray and arr.dtype.kind in 'SU':
# Plain NumPy strings are weird, let's use objects instead
arr = arr.astype(np.object)
if device_option is None:
device_option = scope.CurrentDeviceScope()
if device_option and device_option.device_type == caffe2_pb2.CUDA:
if arr.dtype == np.dtype('float64'):
logger.warning(
"CUDA operators do not support 64-bit doubles, " +
"please use arr.astype(np.float32) or np.int32 for ints." +
" Blob: {}".format(name) +
" type: {}".format(str(arr.dtype))
)
name = StringifyBlobName(name)
if device_option is not None:
return ws.create_blob(name).feed(arr, device_option)
else:
return ws.create_blob(name).feed(arr)
def _Workspace_remove_blob(ws, blob):
ws._remove_blob(str(blob))
Workspace = C.Workspace
Workspace.create_net = _Workspace_create_net_with_exception_intercept
Workspace.run = _Workspace_run
Workspace.feed_blob = _Workspace_feed_blob
Workspace.remove_blob = _Workspace_remove_blob
# C.Blob methods.
def _Blob_feed(blob, arg, device_option=None):
# conservative type check to avoid unnecessary import
if type(arg).__name__ == 'Tensor' and type(arg).__module__ == 'torch':
import torch
if isinstance(arg, torch.Tensor):
assert device_option is None, \
"device_option doesn't make sense with PyTorch tensors"
handle = torch._C._tensor_impl_raw_handle(arg)
blob._wrap_tensor_impl(handle)
return True # _feed() returns True for some reason
if device_option is not None:
device_option = StringifyProto(device_option)
return blob._feed(arg, device_option)
C.Blob.feed = _Blob_feed
def _Tensor_to_torch(tensor):
"""
PyTorch tensor interop (TensorCPU methods)
Can be accessed as:
workspace.Workspace.current.blobs['foo'].tensor().to_torch()
"""
# avoiding circular dependency
import torch
handle = tensor._tensor_impl_raw_handle()
return torch._C._wrap_tensor_impl(handle)
C.TensorCPU.to_torch = _Tensor_to_torch
def _Blob_to_torch(blob):
if not blob.is_tensor():
raise RuntimeError("Blob has to be a tensor")
return blob.as_tensor().to_torch()
C.Blob.to_torch = _Blob_to_torch
|