File: batch_matmul_dnnlowp_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (254 lines) | stat: -rw-r--r-- 10,152 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254


import collections
from itertools import product

import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, workspace
from caffe2.quantization.server import utils as dnnlowp_utils
from caffe2.quantization.server.dnnlowp_test_utils import (
    avoid_vpmaddubsw_overflow_fc,
    check_quantized_results_close,
)
from hypothesis import given, settings


dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])


class DNNLowPBatchMatMulOpTest(hu.HypothesisTestCase):
    # correctness test with no quantization error in inputs
    @given(
        m=st.integers(0, 32),
        n=st.integers(4, 32),
        k=st.integers(4, 32),
        batch_size=st.integers(0, 4),
        **hu.gcs_cpu_only
    )
    @settings(deadline=10000)
    def test_dnnlowp_batch_matmul_int(self, m, n, k, batch_size, gc, dc):
        # A and B have scale 1, so exactly represented after quantization
        A_min = -77
        A_max = A_min + 255
        A = np.round(np.random.rand(batch_size, m, k) * 255 + A_min)
        A = A.astype(np.float32)
        # input channels 0 and 1 are all A_min to avoid overflow from vpmaddubsw
        # when multiplied with B_min and B_max
        if batch_size > 0 and m > 0:
            A[0, :, 0] = A_min
            A[0, 0, 1] = A_max

        B_min = -100
        B_max = B_min + 255
        B = np.round(np.random.rand(batch_size, n, k) * 255 + B_min)
        B = B.astype(np.float32)
        if batch_size > 0:
            B[0, 0, 0] = B_min
            B[0, 1, 0] = B_max

        for i in range(batch_size):
            avoid_vpmaddubsw_overflow_fc(
                m, k, n, A[i,], A_min, A_max, B[i,], B_min, B_max
            )

        for trans_a, trans_b in product([0, 1], [0, 1]):
            Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
            outputs = []

            op_engine_list = [
                ("BatchMatMul", ""),
                ("BatchMatMul", "DNNLOWP"),
                ("BatchMatMul", "DNNLOWP_16"),
                ("Int8BatchMatMul", "DNNLOWP"),
            ]

            for op_type, engine in op_engine_list:
                net = core.Net("test_net")

                if "DNNLOWP" in engine:
                    quantize_A = core.CreateOperator(
                        "Quantize", ["A"], ["A_q"], engine=engine, device_option=gc
                    )
                    net.Proto().op.extend([quantize_A])

                    quantize_B = core.CreateOperator(
                        "Quantize", ["B"], ["B_q"], engine=engine, device_option=gc
                    )
                    net.Proto().op.extend([quantize_B])

                batch_matmul = core.CreateOperator(
                    op_type,
                    [
                        "A_q" if "DNNLOWP" in engine else "A",
                        "B_q" if "DNNLOWP" in engine else "B",
                    ],
                    ["Y_q" if "DNNLOWP" in engine else "Y"],
                    trans_a=trans_a,
                    trans_b=trans_b,
                    engine=engine,
                    device_option=gc,
                )
                net.Proto().op.extend([batch_matmul])

                if "DNNLOWP" in engine:
                    dequantize = core.CreateOperator(
                        "Dequantize", ["Y_q"], ["Y"], engine=engine, device_option=gc
                    )
                    net.Proto().op.extend([dequantize])

                self.ws.create_blob("A").feed(
                    np.transpose(A, (0, 2, 1)) if trans_a else A, device_option=gc
                )
                self.ws.create_blob("B").feed(
                    B if trans_b else np.transpose(B, (0, 2, 1)), device_option=gc
                )
                self.ws.run(net)
                outputs.append(
                    Output(Y=self.ws.blobs["Y"].fetch(), op_type=op_type, engine=engine)
                )

            check_quantized_results_close(outputs)

    # correctness test with no quantization error in inputs
    @given(
        m=st.integers(0, 32),
        n=st.integers(4, 32),
        k=st.integers(4, 32),
        C_1=st.integers(0, 3),  # number of batch dims
        C_2=st.integers(0, 3),
        A_quantized=st.booleans(),
        B_quantized=st.booleans(),
        out_quantized=st.booleans(),
        **hu.gcs_cpu_only
    )
    @settings(deadline=2000)
    def test_dnnlowp_batch_matmul_int_constant_B(
        self, m, n, k, C_1, C_2, A_quantized, B_quantized, out_quantized, gc, dc
    ):
        batch_dims = tuple(np.random.randint(3, size=max(C_1, C_2)))
        batch_dims_A = batch_dims[-C_1:]
        batch_dims_B = batch_dims[-C_2:]
        A = np.zeros(batch_dims_A + (m, k)).astype(np.float32)
        B = np.zeros(batch_dims_B + (n, k)).astype(np.float32)

        if np.prod(batch_dims) > 0:
            for index in np.ndindex(batch_dims_A):
                # When both input and output are float, each input of the batch has
                # scale 1 but with different offset, so input-wise quantization
                # shouldn't have any input quantization error
                # A_min = -77 if (A_quantized or out_quantized) else -77 + i
                A_min = -77
                A_max = A_min + 255
                A[index] = np.round(np.random.rand(m, k) * 255 + A_min)
                # input channels 0 and 1 are all A_min to avoid overflow from vpmaddubsw
                # when multiplied with B_min and B_max
                A[index][:, 0] = A_min
                if m != 0:
                    A[index][0, 1] = A_max

            i = 0
            for index in np.ndindex(batch_dims_B):
                # When weight is quantized in a lazy manner, each input of the batch has
                # scale 1 but with different offset, so input-wise quantization
                # shouldn't have any input quantization error when weight is quantized
                # in a lazy manner.
                B_min = -100 if B_quantized else -100 + i
                # B_min = -100
                B_max = B_min + 255
                B[index] = np.round(np.random.rand(n, k) * 255 + B_min)
                B[index][0, 0] = B_min
                B[index][1, 0] = B_max

                if C_1 > C_2:
                    # A has more dims
                    for outer_index in np.ndindex(batch_dims_A[: C_1 - C_2]):
                        avoid_vpmaddubsw_overflow_fc(
                            m,
                            k,
                            n,
                            A[outer_index] if C_2 == 0 else A[outer_index + index],
                            A_min,
                            A_max,
                            B[index],
                            B_min,
                            B_max,
                        )
                else:
                    avoid_vpmaddubsw_overflow_fc(
                        m, k, n, A[index[-C_1:]], A_min, A_max, B[index], B_min, B_max
                    )
                i += 1

        for trans_a, trans_b in product([0, 1], [0, 1]):
            Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
            outputs = []

            op_engine_list = [
                ("BatchMatMul", ""),
                ("BatchMatMul", "DNNLOWP"),
                ("Int8BatchMatMul", "DNNLOWP"),
            ]

            for op_type, engine in op_engine_list:
                net = core.Net("test_net")

                do_quantize_A = "DNNLOWP" in engine and A_quantized
                do_quantize_B = "DNNLOWP" in engine and B_quantized
                do_dequantize = "DNNLOWP" in engine and out_quantized

                if do_quantize_A:
                    quantize_A = core.CreateOperator(
                        "Quantize", ["A"], ["A_q"], engine=engine, device_option=gc
                    )
                    net.Proto().op.extend([quantize_A])

                if do_quantize_B:
                    int8_given_tensor_fill, B_q_param = dnnlowp_utils.create_int8_given_tensor_fill(
                        B if trans_b else B.swapaxes(-1, -2), "B_q"
                    )
                    net.Proto().op.extend([int8_given_tensor_fill])

                batch_matmul = core.CreateOperator(
                    op_type,
                    ["A_q" if do_quantize_A else "A", "B_q" if do_quantize_B else "B"],
                    ["Y_q" if do_dequantize else "Y"],
                    trans_a=trans_a,
                    trans_b=trans_b,
                    broadcast=True,
                    constant_B=True,
                    dequantize_output=not do_dequantize,
                    engine=engine,
                    device_option=gc,
                )
                if do_quantize_B:
                    # When quantized weight is provided, we can't rescale the
                    # output dynamically by looking at the range of output of each
                    # batch, so here we provide the range of output observed from
                    # fp32 reference implementation
                    dnnlowp_utils.add_quantization_param_args(
                        batch_matmul, outputs[0][0]
                    )
                net.Proto().op.extend([batch_matmul])

                if do_dequantize:
                    dequantize = core.CreateOperator(
                        "Dequantize", ["Y_q"], ["Y"], engine=engine, device_option=gc
                    )
                    net.Proto().op.extend([dequantize])

                self.ws.create_blob("A").feed(
                    A.swapaxes(-1, -2) if trans_a else A, device_option=gc
                )
                self.ws.create_blob("B").feed(
                    B if trans_b else B.swapaxes(-1, -2), device_option=gc
                )
                self.ws.run(net)
                outputs.append(
                    Output(Y=self.ws.blobs["Y"].fetch(), op_type=op_type, engine=engine)
                )

            if np.prod(batch_dims) > 0:
                check_quantized_results_close(outputs)