1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
import collections
from itertools import product
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, workspace
from caffe2.quantization.server import utils as dnnlowp_utils
from caffe2.quantization.server.dnnlowp_test_utils import (
avoid_vpmaddubsw_overflow_fc,
check_quantized_results_close,
)
from hypothesis import given, settings
dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])
class DNNLowPBatchMatMulOpTest(hu.HypothesisTestCase):
# correctness test with no quantization error in inputs
@given(
m=st.integers(0, 32),
n=st.integers(4, 32),
k=st.integers(4, 32),
batch_size=st.integers(0, 4),
**hu.gcs_cpu_only
)
@settings(deadline=10000)
def test_dnnlowp_batch_matmul_int(self, m, n, k, batch_size, gc, dc):
# A and B have scale 1, so exactly represented after quantization
A_min = -77
A_max = A_min + 255
A = np.round(np.random.rand(batch_size, m, k) * 255 + A_min)
A = A.astype(np.float32)
# input channels 0 and 1 are all A_min to avoid overflow from vpmaddubsw
# when multiplied with B_min and B_max
if batch_size > 0 and m > 0:
A[0, :, 0] = A_min
A[0, 0, 1] = A_max
B_min = -100
B_max = B_min + 255
B = np.round(np.random.rand(batch_size, n, k) * 255 + B_min)
B = B.astype(np.float32)
if batch_size > 0:
B[0, 0, 0] = B_min
B[0, 1, 0] = B_max
for i in range(batch_size):
avoid_vpmaddubsw_overflow_fc(
m, k, n, A[i,], A_min, A_max, B[i,], B_min, B_max
)
for trans_a, trans_b in product([0, 1], [0, 1]):
Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
outputs = []
op_engine_list = [
("BatchMatMul", ""),
("BatchMatMul", "DNNLOWP"),
("BatchMatMul", "DNNLOWP_16"),
("Int8BatchMatMul", "DNNLOWP"),
]
for op_type, engine in op_engine_list:
net = core.Net("test_net")
if "DNNLOWP" in engine:
quantize_A = core.CreateOperator(
"Quantize", ["A"], ["A_q"], engine=engine, device_option=gc
)
net.Proto().op.extend([quantize_A])
quantize_B = core.CreateOperator(
"Quantize", ["B"], ["B_q"], engine=engine, device_option=gc
)
net.Proto().op.extend([quantize_B])
batch_matmul = core.CreateOperator(
op_type,
[
"A_q" if "DNNLOWP" in engine else "A",
"B_q" if "DNNLOWP" in engine else "B",
],
["Y_q" if "DNNLOWP" in engine else "Y"],
trans_a=trans_a,
trans_b=trans_b,
engine=engine,
device_option=gc,
)
net.Proto().op.extend([batch_matmul])
if "DNNLOWP" in engine:
dequantize = core.CreateOperator(
"Dequantize", ["Y_q"], ["Y"], engine=engine, device_option=gc
)
net.Proto().op.extend([dequantize])
self.ws.create_blob("A").feed(
np.transpose(A, (0, 2, 1)) if trans_a else A, device_option=gc
)
self.ws.create_blob("B").feed(
B if trans_b else np.transpose(B, (0, 2, 1)), device_option=gc
)
self.ws.run(net)
outputs.append(
Output(Y=self.ws.blobs["Y"].fetch(), op_type=op_type, engine=engine)
)
check_quantized_results_close(outputs)
# correctness test with no quantization error in inputs
@given(
m=st.integers(0, 32),
n=st.integers(4, 32),
k=st.integers(4, 32),
C_1=st.integers(0, 3), # number of batch dims
C_2=st.integers(0, 3),
A_quantized=st.booleans(),
B_quantized=st.booleans(),
out_quantized=st.booleans(),
**hu.gcs_cpu_only
)
@settings(deadline=2000)
def test_dnnlowp_batch_matmul_int_constant_B(
self, m, n, k, C_1, C_2, A_quantized, B_quantized, out_quantized, gc, dc
):
batch_dims = tuple(np.random.randint(3, size=max(C_1, C_2)))
batch_dims_A = batch_dims[-C_1:]
batch_dims_B = batch_dims[-C_2:]
A = np.zeros(batch_dims_A + (m, k)).astype(np.float32)
B = np.zeros(batch_dims_B + (n, k)).astype(np.float32)
if np.prod(batch_dims) > 0:
for index in np.ndindex(batch_dims_A):
# When both input and output are float, each input of the batch has
# scale 1 but with different offset, so input-wise quantization
# shouldn't have any input quantization error
# A_min = -77 if (A_quantized or out_quantized) else -77 + i
A_min = -77
A_max = A_min + 255
A[index] = np.round(np.random.rand(m, k) * 255 + A_min)
# input channels 0 and 1 are all A_min to avoid overflow from vpmaddubsw
# when multiplied with B_min and B_max
A[index][:, 0] = A_min
if m != 0:
A[index][0, 1] = A_max
i = 0
for index in np.ndindex(batch_dims_B):
# When weight is quantized in a lazy manner, each input of the batch has
# scale 1 but with different offset, so input-wise quantization
# shouldn't have any input quantization error when weight is quantized
# in a lazy manner.
B_min = -100 if B_quantized else -100 + i
# B_min = -100
B_max = B_min + 255
B[index] = np.round(np.random.rand(n, k) * 255 + B_min)
B[index][0, 0] = B_min
B[index][1, 0] = B_max
if C_1 > C_2:
# A has more dims
for outer_index in np.ndindex(batch_dims_A[: C_1 - C_2]):
avoid_vpmaddubsw_overflow_fc(
m,
k,
n,
A[outer_index] if C_2 == 0 else A[outer_index + index],
A_min,
A_max,
B[index],
B_min,
B_max,
)
else:
avoid_vpmaddubsw_overflow_fc(
m, k, n, A[index[-C_1:]], A_min, A_max, B[index], B_min, B_max
)
i += 1
for trans_a, trans_b in product([0, 1], [0, 1]):
Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
outputs = []
op_engine_list = [
("BatchMatMul", ""),
("BatchMatMul", "DNNLOWP"),
("Int8BatchMatMul", "DNNLOWP"),
]
for op_type, engine in op_engine_list:
net = core.Net("test_net")
do_quantize_A = "DNNLOWP" in engine and A_quantized
do_quantize_B = "DNNLOWP" in engine and B_quantized
do_dequantize = "DNNLOWP" in engine and out_quantized
if do_quantize_A:
quantize_A = core.CreateOperator(
"Quantize", ["A"], ["A_q"], engine=engine, device_option=gc
)
net.Proto().op.extend([quantize_A])
if do_quantize_B:
int8_given_tensor_fill, B_q_param = dnnlowp_utils.create_int8_given_tensor_fill(
B if trans_b else B.swapaxes(-1, -2), "B_q"
)
net.Proto().op.extend([int8_given_tensor_fill])
batch_matmul = core.CreateOperator(
op_type,
["A_q" if do_quantize_A else "A", "B_q" if do_quantize_B else "B"],
["Y_q" if do_dequantize else "Y"],
trans_a=trans_a,
trans_b=trans_b,
broadcast=True,
constant_B=True,
dequantize_output=not do_dequantize,
engine=engine,
device_option=gc,
)
if do_quantize_B:
# When quantized weight is provided, we can't rescale the
# output dynamically by looking at the range of output of each
# batch, so here we provide the range of output observed from
# fp32 reference implementation
dnnlowp_utils.add_quantization_param_args(
batch_matmul, outputs[0][0]
)
net.Proto().op.extend([batch_matmul])
if do_dequantize:
dequantize = core.CreateOperator(
"Dequantize", ["Y_q"], ["Y"], engine=engine, device_option=gc
)
net.Proto().op.extend([dequantize])
self.ws.create_blob("A").feed(
A.swapaxes(-1, -2) if trans_a else A, device_option=gc
)
self.ws.create_blob("B").feed(
B if trans_b else B.swapaxes(-1, -2), device_option=gc
)
self.ws.run(net)
outputs.append(
Output(Y=self.ws.blobs["Y"].fetch(), op_type=op_type, engine=engine)
)
if np.prod(batch_dims) > 0:
check_quantized_results_close(outputs)
|