File: caffe2_dnnlowp_utils.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (561 lines) | stat: -rw-r--r-- 20,455 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
#include "caffe2_dnnlowp_utils.h"
#include "caffe2/core/tensor_int8.h"
#include "caffe2/quantization/server/sigmoid.h"
#include "caffe2/quantization/server/tanh.h"

#include <map>
#ifdef _OPENMP
#include <omp.h>
#endif

C10_DECLARE_int32(caffe2_dnnlowp_activation_quantization_precision);
C10_DECLARE_int32(caffe2_dnnlowp_weight_quantization_precision);
C10_DECLARE_int32(caffe2_dnnlowp_requantization_multiplier_precision);
C10_DECLARE_int32(caffe2_dnnlowp_eltwise_quantization_precision);
C10_DECLARE_bool(caffe2_dnnlowp_force_scale_power_of_two);
C10_DECLARE_bool(caffe2_dnnlowp_preserve_activation_sparsity);
C10_DECLARE_bool(caffe2_dnnlowp_preserve_weight_sparsity);
C10_DECLARE_string(caffe2_dnnlowp_activation_quantization_kind);
C10_DECLARE_string(caffe2_dnnlowp_weight_quantization_kind);
C10_DECLARE_double(caffe2_dnnlowp_weight_p99_threshold);
C10_DECLARE_double(caffe2_dnnlowp_activation_p99_threshold);

namespace dnnlowp {

using namespace std;
using namespace caffe2;
using int8::Int8TensorCPU;

static bool HasDNNLowPEngine_(const OperatorDef& op_def) {
  const string ENGINE_PREFIX = "DNNLOWP";
  return strncmp(
             op_def.engine().c_str(),
             ENGINE_PREFIX.c_str(),
             ENGINE_PREFIX.size()) == 0;
}

static bool HasDNNLowPEngine_(const OperatorBase& op) {
  return HasDNNLowPEngine_(op.debug_def());
}

void PropagateOutputTensorQuantizationParams(
    OperatorBase* op,
    int idx,
    const TensorQuantizationParams& qparams) {
  LOG_IF(WARNING, !HasDNNLowPEngine_(*op));
  Int8TensorCPU* output =
      op->Outputs()[idx]->template GetMutable<Int8TensorCPU>();
  output->scale = qparams.scale;
  output->zero_point = qparams.zero_point;
}

TensorQuantizationParams GetInputTensorQuantizationParamsOf(
    OperatorBase* op,
    int idx,
    const QuantizationFactory* qfactory,
    bool is_weight /*=false*/) {
  LOG_IF(WARNING, !HasDNNLowPEngine_(*op));

  if (op->InputIsType<Int8TensorCPU>(idx)) {
    const Int8TensorCPU& int8_tensor = op->Input<Int8TensorCPU>(idx);
    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
    TensorQuantizationParams qparams;
    qparams.scale = int8_tensor.scale;
    qparams.zero_point = int8_tensor.zero_point;
    qparams.precision = qfactory->GetActivationPrecision();
    return qparams;
  } else {
    const TensorCPU* tensor = &op->template Input<Tensor>(idx, CPU);
    CAFFE_ENFORCE(tensor->template IsType<float>());
    CAFFE_ENFORCE(tensor->numel() == 0 || tensor->template data<float>());

    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    float min, max;
    fbgemm::FindMinMax(
        tensor->template data<float>(), &min, &max, tensor->numel());
    auto activation_quantization_kind = qfactory->GetActivationKind();
    if (activation_quantization_kind !=
        QuantizationFactory::QuantizationKind::MIN_MAX_QUANTIZATION) {
      LOG(WARNING)
          << "DNNLOWP dynamic int8 FC uses min_max as the only activation_quantization kind. Qparams will be assigned based on min_max regardless of activation_quantization_kind args.";
    }
    if (is_weight) {
      auto weight_quantization_kind = qfactory->GetWeightKind();
      if (weight_quantization_kind !=
          QuantizationFactory::QuantizationKind::MIN_MAX_QUANTIZATION) {
        LOG(WARNING)
            << "DNNLOWP dynamic int8 FC weight is not constant, assigning qparams to weight based on min_max, regardless of weight_quantization_kind args.";
      }
    }
    return qfactory->ChooseQuantizationParams(min, max, is_weight);
  }
}

static string OutputArgumentIdxString_(int idx) {
  return idx == 0 ? "" : to_string(idx + 1);
}

static string OutputScaleArgumentName(int idx) {
  return "Y" + OutputArgumentIdxString_(idx) + "_scale";
}

static string OutputZeroPointArgumentName(int idx) {
  return "Y" + OutputArgumentIdxString_(idx) + "_zero_point";
}

static void SetStaticQuantizationParams_(
    OperatorDef* op_def,
    int output_index,
    const TensorQuantizationParams& qparams) {
  AddArgument<float>(
      OutputScaleArgumentName(output_index), qparams.scale, op_def);
  AddArgument<int32_t>(
      OutputZeroPointArgumentName(output_index), qparams.zero_point, op_def);
}

void SetStaticQuantizationParams(
    OperatorBase* op,
    int output_index,
    const TensorQuantizationParams& qparams) {
  LOG_IF(WARNING, !HasDNNLowPEngine_(*op));
  auto op_def = make_shared<OperatorDef>();
  *op_def = op->debug_def();
  SetStaticQuantizationParams_(op_def.get(), output_index, qparams);
  op->set_debug_def(op_def);
}

bool HasStaticQuantization(
    const caffe2::OperatorBase* op,
    int output_index /*=0*/) {
  LOG_IF(WARNING, !HasDNNLowPEngine_(*op));
  return op->HasSingleArgumentOfType<float>(
      OutputScaleArgumentName(output_index));
}

TensorQuantizationParams GetStaticQuantizationParamsOf(
    const caffe2::OperatorBase* op,
    int idx) {
  LOG_IF(WARNING, !HasDNNLowPEngine_(*op));
  unique_ptr<QuantizationFactory> qfactory = GetQuantizationFactoryOf(op);

  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
  TensorQuantizationParams qparams;
  qparams.scale = op->GetSingleArgument<float>(OutputScaleArgumentName(idx), 0);
  qparams.zero_point =
      op->GetSingleArgument<int32_t>(OutputZeroPointArgumentName(idx), 0);
  qparams.precision = qfactory->GetActivationPrecision();

  return qparams;
}

template <typename T>
const T* QuantizeInputIfNeeded(
    OperatorBase* op,
    int input_index,
    const TensorQuantizationParams& qparams,
    vector<T>& temp) {
  if (op->InputIsType<int8::Int8TensorCPU>(input_index)) {
    // Already quantized
    return op->Input<int8::Int8TensorCPU>(input_index).t.data<T>();
  } else {
    // Need to quantize
    const TensorCPU& tensor = op->Input<Tensor>(input_index, CPU);
    temp.resize(tensor.numel());
    fbgemm::Quantize<T>(
        tensor.data<float>(), temp.data(), temp.size(), qparams);
    return temp.data();
  }
}

template <typename T>
const T* RowWiseQuantizeInputIfNeeded(
    OperatorBase* op,
    int input_index,
    const std::vector<TensorQuantizationParams>& qparams,
    vector<T>& temp) {
  if (op->InputIsType<int8::Int8TensorCPU>(input_index)) {
    // Already quantized
    return op->Input<int8::Int8TensorCPU>(input_index).t.data<T>();
  } else {
    // Need to quantize
    const TensorCPU& tensor = op->Input<Tensor>(input_index, CPU);
    temp.resize(tensor.numel());
    // number of rows
    int N = qparams.size();
    int rowwidth = temp.size() / N;
    // quantize each row
    for (int i = 0; i < N; i++) {
      fbgemm::Quantize<T>(
          tensor.data<float>() + rowwidth * i,
          temp.data() + rowwidth * i,
          rowwidth,
          qparams[i]);
    }
    return temp.data();
  }
}

template const uint8_t* QuantizeInputIfNeeded<uint8_t>(
    OperatorBase* op,
    int input_index,
    const TensorQuantizationParams& qparams,
    vector<uint8_t>& temp);

template const int8_t* QuantizeInputIfNeeded<int8_t>(
    OperatorBase* op,
    int input_index,
    const TensorQuantizationParams& qparams,
    vector<int8_t>& temp);

template const uint16_t* QuantizeInputIfNeeded<uint16_t>(
    OperatorBase* op,
    int input_index,
    const TensorQuantizationParams& qparams,
    vector<uint16_t>& temp);

template const int16_t* QuantizeInputIfNeeded<int16_t>(
    OperatorBase* op,
    int input_index,
    const TensorQuantizationParams& qparams,
    vector<int16_t>& temp);

template const uint8_t* RowWiseQuantizeInputIfNeeded<uint8_t>(
    OperatorBase* op,
    int input_index,
    const std::vector<TensorQuantizationParams>& qparams,
    vector<uint8_t>& temp);

template const uint16_t* RowWiseQuantizeInputIfNeeded<uint16_t>(
    OperatorBase* op,
    int input_index,
    const std::vector<TensorQuantizationParams>& qparams,
    vector<uint16_t>& temp);

void MeasureQuantizationError(
    const float* actual,
    const float* ref,
    size_t len,
    QuantizationErrorStats* stat) {
  // NOLINTNEXTLINE(clang-diagnostic-sign-compare)
  for (int i = 0; i < len; ++i) {
    stat->sum_sq += ref[i] * ref[i];
    float err = actual[i] - ref[i];
    stat->sum_err_sq += err * err;

    if (fabs(err) > stat->max_abs_err) {
      stat->max_abs_err = fabs(err);
      stat->max_err_actual = actual[i];
      stat->max_err_ref = ref[i];
    }
  }
  ++stat->measure_cnt;
}

void ReportQuantizationError(
    const OperatorBase* op,
    const QuantizationErrorStats& stat) {
  if (stat.sum_sq == 0) {
    LOG(INFO) << " output " << op->debug_def().output(0) << " of operator "
              << op << " with type " << op->debug_def().type() << " and engine "
              << op->debug_def().engine()
              << " has l2 relative error nan (stat.sum_err_sq "
              << stat.sum_err_sq << " stat.sum_sq 0)"
              << " and max abs error " << stat.max_abs_err << " (reference is "
              << stat.max_err_ref << " and actual is " << stat.max_err_actual
              << ")"
              << " sum_err_sq " << stat.sum_err_sq << " sum_sq_ " << stat.sum_sq
              << " cnt " << stat.measure_cnt;
  } else {
    LOG(INFO) << " output " << op->debug_def().output(0) << " of operator "
              << op << " with type " << op->debug_def().type() << " and engine "
              << op->debug_def().engine() << " has l2 relative error "
              << std::sqrt(stat.sum_err_sq) / std::sqrt(stat.sum_sq)
              << " and max abs error " << stat.max_abs_err << " (reference is "
              << stat.max_err_ref << " and actual is " << stat.max_err_actual
              << ")"
              << " sum_err_sq " << stat.sum_err_sq << " sum_sq_ " << stat.sum_sq
              << " cnt " << stat.measure_cnt;
  }
}

static unique_ptr<QuantizationFactory> GetQuantizationFactoryOf_(
    const OperatorDef& op_def) {
  int activation_precision =
      ArgumentHelper::GetSingleArgument<OperatorDef, int>(
          op_def,
          "activation_precision",
          FLAGS_caffe2_dnnlowp_activation_quantization_precision);
  int weight_precision = ArgumentHelper::GetSingleArgument<OperatorDef, int>(
      op_def,
      "weight_precision",
      FLAGS_caffe2_dnnlowp_weight_quantization_precision);
  int requantization_multiplier_precision =
      ArgumentHelper::GetSingleArgument<OperatorDef, int>(
          op_def,
          "requantization_multiplier_precision",
          FLAGS_caffe2_dnnlowp_requantization_multiplier_precision);
  int eltwise_quantization_precision =
      ArgumentHelper::GetSingleArgument<OperatorDef, int>(
          op_def,
          "eltwise_quantization_precision",
          FLAGS_caffe2_dnnlowp_eltwise_quantization_precision);
  bool preserve_activation_sparsity =
      ArgumentHelper::GetSingleArgument<OperatorDef, bool>(
          op_def,
          "preserve_activation_sparsity",
          FLAGS_caffe2_dnnlowp_preserve_activation_sparsity);
  bool preserve_weight_sparsity =
      ArgumentHelper::GetSingleArgument<OperatorDef, bool>(
          op_def,
          "preserve_weight_sparsity",
          FLAGS_caffe2_dnnlowp_preserve_weight_sparsity);
  bool force_scale_power_of_two =
      ArgumentHelper::GetSingleArgument<OperatorDef, bool>(
          op_def,
          "force_scale_power_of_two",
          FLAGS_caffe2_dnnlowp_force_scale_power_of_two);
  string activation_quantization_kind =
      ArgumentHelper::GetSingleArgument<OperatorDef, string>(
          op_def,
          "activation_quantization_kind",
          FLAGS_caffe2_dnnlowp_activation_quantization_kind);
  string weight_quantization_kind =
      ArgumentHelper::GetSingleArgument<OperatorDef, string>(
          op_def,
          "weight_quantization_kind",
          FLAGS_caffe2_dnnlowp_weight_quantization_kind);
  float weight_p99_threshold =
      ArgumentHelper::GetSingleArgument<OperatorDef, float>(
          op_def,
          "weight_p99_threshold",
          FLAGS_caffe2_dnnlowp_weight_p99_threshold);
  float activation_p99_threshold =
      ArgumentHelper::GetSingleArgument<OperatorDef, float>(
          op_def,
          "activation_p99_threshold",
          FLAGS_caffe2_dnnlowp_activation_p99_threshold);
  std::stringstream ss;
  ss << "Quantization method for op with output " << op_def.output(0)
     << " engine " << op_def.engine() << " activation_precision "
     << activation_precision << " weight_precision " << weight_precision
     << " requantization_multiplier_precision "
     << requantization_multiplier_precision
     << " eltwise_quantization_precision " << eltwise_quantization_precision
     << " preserve_activation_sparsity " << preserve_activation_sparsity
     << " preserve_weight_sparsity " << preserve_weight_sparsity
     << " force_scale_power_of_two " << force_scale_power_of_two
     << " activation_quantization_kind " << activation_quantization_kind
     << " weight_quantization_kind " << weight_quantization_kind;
  if (weight_quantization_kind == "p99" || weight_quantization_kind == "P99") {
    ss << " weight p99 threshold " << weight_p99_threshold;
  }
  if (activation_quantization_kind == "p99" ||
      activation_quantization_kind == "P99") {
    ss << " activation p99 threshold " << activation_p99_threshold;
  }
  VLOG(2) << ss.str();

  // NOLINTNEXTLINE(modernize-make-unique)
  return unique_ptr<QuantizationFactory>(new QuantizationFactory(
      activation_precision,
      weight_precision,
      requantization_multiplier_precision,
      eltwise_quantization_precision,
      preserve_activation_sparsity,
      preserve_weight_sparsity,
      force_scale_power_of_two,
      StringToKind(activation_quantization_kind),
      StringToKind(weight_quantization_kind),
      weight_p99_threshold,
      activation_p99_threshold));
}

unique_ptr<QuantizationFactory> GetQuantizationFactoryOf(
    const OperatorBase* op) {
  return GetQuantizationFactoryOf_(op->debug_def());
}

void AdjustOutputTensorQuantizationParamsWithFollowedBy(
    OperatorBase* op,
    const string& followed_by) {
  LOG_IF(WARNING, !HasDNNLowPEngine_(*op));

  auto op_def = make_shared<OperatorDef>();
  *op_def = op->debug_def();
  AddArgument<string>("followed_by", followed_by, op_def.get());
  op->set_debug_def(op_def);

  if (followed_by == "Sigmoid") {
    SetStaticQuantizationParams(
        op, 0, Sigmoid<uint8_t>().GetInputQuantizationParams());
  } else if (followed_by == "Tanh") {
    SetStaticQuantizationParams(
        op, 0, Tanh<uint8_t>().GetInputQuantizationParams());
  } else if (followed_by == "Relu") {
    if (HasStaticQuantization(op)) {
      unique_ptr<QuantizationFactory> qfactory = GetQuantizationFactoryOf(op);
      TensorQuantizationParams qparams = GetStaticQuantizationParamsOf(op, 0);
      qparams = qfactory->ChooseQuantizationParams(0, qparams.Max());
      SetStaticQuantizationParams(op, 0, qparams);
    }
  } else {
    LOG(WARNING) << "Unknown followed_by " << followed_by;
  }
}

void ParseDNNLowPOperatorArguments(
    OperatorBase* op,
    bool* dequantize_output,
    bool* measure_quantization_error,
    string* followed_by) {
  // When exiting quantized region or we're just doing per-op quantization,
  // dequantize the outputs as floats.
  if (dequantize_output) {
    *dequantize_output =
        op->GetSingleArgument<bool>("dequantize_output", false);
    if (*dequantize_output) {
      VLOG(2) << "Dequantize output " << op->debug_def().output(0)
              << " of operator type " << op->debug_def().type();
    }
  }

  // Measure quantization error by comparing with reference fp32 operators.
  if (measure_quantization_error) {
    *measure_quantization_error =
        op->GetSingleArgument<bool>("measure_quantization_error", false);
  }

  // Output scale and zero_point can be specified (actually recommended to be
  // specified for performance to avoid on-the-fly quantization parameter
  // selection) from activation distributions collected from profiling.
  if (HasStaticQuantization(op)) {
    TensorQuantizationParams qparams = GetStaticQuantizationParamsOf(op, 0);
    unique_ptr<QuantizationFactory> qfactory = GetQuantizationFactoryOf(op);
    if (qparams.zero_point != (1 << (qfactory->GetActivationPrecision() - 1)) &&
        qparams.zero_point != 0 && qfactory->GetPreserveActivationSparsity()) {
      LOG(WARNING) << "Symmetric quantization is used for activation but "
                      "Y_zero_point is "
                   << qparams.zero_point << " for " << op->debug_def().output(0)
                   << " output activation of an operator with type "
                   << op->debug_def().type();
    }
  } else {
    if (op->HasSingleArgumentOfType<int>("Y_zero_point")) {
      LOG(WARNING) << "Y_zero_point without Y_scale for "
                   << op->debug_def().output(0)
                   << " (an output of operator type " << op->debug_def().type()
                   << ") doesn't make sense";
    }
  }

  // When an operator has only one consumer and the consumer only cares about
  // a limited range of values, we can quantize more precisely.
  if (op->HasSingleArgumentOfType<string>("followed_by")) {
    string followed_by_ = op->GetSingleArgument<string>("followed_by", "");
    VLOG(2) << "Operator with type " << op->debug_def().type() << " and output "
            << op->debug_def().output(0) << " is followed by " << followed_by_;

    AdjustOutputTensorQuantizationParamsWithFollowedBy(op, followed_by_);
    if (followed_by) {
      *followed_by = followed_by_;
    }
  }
}

NetDef AddScaleZeroOffsetArgumentsWithHistogram(
    NetDef net_def,
    const string& histogram_file_name) {
  ifstream f(histogram_file_name);

  // check the format by looking at the first line
  string first_line, word;
  getline(f, first_line);
  f.seekg(0, f.beg);
  istringstream ist(first_line);
  int nwords_first_line = 0;
  while (ist >> word) {
    ++nwords_first_line;
  }

  ist.str(first_line);
  ist.clear();

  bool new_format = true;
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  int op_index, i, nbins;
  string op_type, tensor_name;
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  float min, max;
  ist >> op_index >> op_type >> i >> tensor_name >> min >> max >> nbins;
  if (nwords_first_line != nbins + 7) {
    ist.str(first_line);
    ist.clear();
    ist >> op_index >> i >> tensor_name >> min >> max >> nbins;
    if (nwords_first_line == nbins + 6) {
      new_format = false;
    } else {
      LOG(WARNING) << "histogram file " << histogram_file_name
                   << " has an invalid format";
      return net_def;
    }
  }

  // parse the input file
  op_index = 0;
  for (auto& op_def : *net_def.mutable_op()) {
    ArgumentHelper arg_helper(op_def);

    for (i = 0; i < op_def.output().size(); ++i) {
      // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
      int op_index2, i2;

      if (new_format) {
        f >> op_index2 >> op_type >> i2 >> tensor_name >> min >> max >> nbins;
      } else {
        f >> op_index2 >> i2 >> tensor_name >> min >> max >> nbins;
      }
      LOG_IF(WARNING, op_index2 != op_index)
          << "op index " << op_index2 << " doesn't match with " << op_index;
      LOG_IF(WARNING, tensor_name != op_def.output(i))
          << tensor_name << " in histogram file line " << op_index
          << " doesn't match with operation def " << op_def.output(i);
      LOG_IF(WARNING, i2 != i)
          << "output tensor index " << i2 << " doesn't match with " << i;
      if (new_format) {
        LOG_IF(WARNING, op_type != op_def.type())
            << "operator type " << op_type << " in histogram file line "
            << op_index << " doesn't match with operation def "
            << op_def.type();
      }

      vector<uint64_t> bins;
      for (int j = 0; j < nbins; ++j) {
        // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
        uint64_t cnt;
        f >> cnt;
        bins.push_back(cnt);
      }

      if (!HasDNNLowPEngine_(op_def) ||
          arg_helper.GetSingleArgument<int>("dequantize_output", 0) != 0 ||
          i > 0) {
        LOG(INFO) << "Skip " << op_def.type() << " " << op_def.output(0);
        continue;
      }

      Histogram hist = Histogram(min, max, bins);

      unique_ptr<QuantizationFactory> qfactory =
          GetQuantizationFactoryOf_(op_def);
      TensorQuantizationParams qparams =
          qfactory->ChooseQuantizationParams(hist);

      SetStaticQuantizationParams_(&op_def, 0, qparams);
    }
    ++op_index;
  }

  return net_def;
}

} // namespace dnnlowp