1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
#include "concat_dnnlowp_op.h"
#ifdef _OPENMP
#include <omp.h>
#endif
#include "dnnlowp_partition.h"
namespace caffe2 {
using namespace std;
template <typename T>
ConcatDNNLowPOp<T>::ConcatDNNLowPOp(
const OperatorDef& operator_def,
Workspace* ws)
: BaseType(operator_def, ws) {
if (HasArgument("axis")) {
axis_ = this->template GetSingleArgument<int>("axis", -1);
add_axis_ = this->template GetSingleArgument<int>("add_axis", 0);
} else {
axis_ = GetDimFromOrderString(
this->template GetSingleArgument<string>("order", "NCHW"));
add_axis_ = 0;
}
CAFFE_ENFORCE_GE(axis_, 0);
requantization_params_.resize(InputSize());
}
template <typename T>
bool ConcatDNNLowPOp<T>::RunOnDevice() {
GetQuantizationParameters_();
auto* output = OutputTensorCPU_(0);
Tensor* split = nullptr;
int* axis_data = nullptr;
if (OutputSize() >= 2) {
split = this->template Output<Tensor>(1, CPU);
split->Resize(vector<int64_t>(1, InputSize()));
axis_data = split->template mutable_data<int>();
}
auto& input_zero = InputTensorCPU_(0);
CAFFE_ENFORCE_LT(
axis_,
input_zero.ndim() + (add_axis_ ? 1 : 0),
"Axis not in input ndim range.");
for (int i = 1; i < InputSize(); ++i) {
CAFFE_ENFORCE(
InputTensorCPU_(i).dtype() == input_zero.dtype(),
"All inputs must have the same type, expected: ",
input_zero.dtype().name(),
" but got: ",
InputTensorCPU_(i).dtype().name(),
" for input: ",
i);
}
int before = 1, after = 1;
vector<int64_t> output_dims(input_zero.sizes().vec());
for (int i = 0; i < input_zero.ndim(); ++i) {
if (i == axis_ && !add_axis_) {
continue;
}
int dim = input_zero.dim32(i);
if (i < axis_) {
before *= dim;
} else { // i > axis_ || i == axis_ && add_axis_
after *= dim;
}
// check the input dims are compatible.
for (int j = 1; j < InputSize(); ++j) {
int dim_j = InputTensorCPU_(j).dim32(i);
CAFFE_ENFORCE(
dim == dim_j,
"Expect dimension = ",
dim,
" got ",
dim_j,
" at axis = ",
i,
" for input: ",
j,
". The input tensors can only have different dimensions "
"when arg 'add_axis' = 0 and along the axis = ",
axis_,
" <",
InputTensorCPU_(0).sizes(),
"> vs <",
InputTensorCPU_(j).sizes(),
">.");
}
}
int output_channels = 0;
for (int i = 0; i < InputSize(); ++i) {
auto dim = add_axis_ ? 1 : InputTensorCPU_(i).dim32(axis_);
if (axis_data) {
axis_data[i] = dim;
}
output_channels += dim;
}
if (add_axis_) {
output_dims.insert(output_dims.begin() + axis_, output_channels);
} else {
output_dims[axis_] = output_channels;
}
output->Resize(output_dims);
size_t output_offset = 0;
char* output_data = reinterpret_cast<char*>(GetQuantizedOutputData_());
for (int i = 0; i < InputSize(); ++i) {
auto& input = InputTensorCPU_(i);
auto axis_dim = add_axis_ ? 1 : input.dim32(axis_);
vector<T> input_temp(input.numel());
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int nthreads = dnnlowp_get_num_threads();
int tid = dnnlowp_get_thread_num();
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int before_begin, before_end;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int after_begin, after_end;
Get1DPartitionOf2D(
before,
axis_dim * after,
nthreads,
tid,
&before_begin,
&before_end,
&after_begin,
&after_end);
int j_begin = before_begin * axis_dim * after + after_begin;
int j_end = (before_end - 1) * axis_dim * after + after_end;
if (InputTensorCPU_(i).template IsType<T>()) {
const T* input_data = input.template data<T>();
for (int j = j_begin; j < j_end; ++j) {
input_temp[j] = fbgemm::Requantize<T>(
input_data[j] - in_qparams_[i].zero_point,
requantization_params_[i]);
}
} else {
fbgemm::Quantize<T>(
input.template data<float>() + j_begin,
input_temp.data() + j_begin,
j_end - j_begin,
out_qparams_);
}
math::CopyMatrix<CPUContext>(
sizeof(T),
before_end - before_begin,
after_end - after_begin,
input_temp.data() + before_begin * axis_dim * after + after_begin,
axis_dim * after,
output_data + output_offset + before_begin * output_channels * after +
after_begin * sizeof(T),
output_channels * after,
&context_,
input_zero.dtype().copy());
}
output_offset += axis_dim * after * sizeof(T);
}
RunOnDeviceEpilogue_();
return true;
}
template <typename T>
void ConcatDNNLowPOp<T>::GetQuantizationParameters_() {
using namespace dnnlowp;
for (int i = 0; i < InputSize(); ++i) {
in_qparams_[i] =
GetInputTensorQuantizationParamsOf(this, i, qfactory_.get());
}
GetOutputQuantizationParams_();
for (int i = 0; i < InputSize(); ++i) {
float real_multiplier = in_qparams_[i].scale / out_qparams_.scale;
requantization_params_[i] = qfactory_->ChooseRequantizationMultiplier(
real_multiplier, out_qparams_);
}
}
REGISTER_CPU_OPERATOR_WITH_ENGINE(Concat, DNNLOWP, ConcatDNNLowPOp<uint8_t>);
REGISTER_CPU_OPERATOR_WITH_ENGINE(
Int8Concat,
DNNLOWP,
ConcatDNNLowPOp<uint8_t>);
} // namespace caffe2
|