1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
|
#include "conv_dnnlowp_acc16_op.h"
// #define DNNLOWP_ACC16_IN_SLOW_PATH
// #define DNNLOWP_MEASURE_TIME_BREAKDOWN
#ifdef DNNLOWP_MEASURE_TIME_BREAKDOWN
#include <chrono>
#endif
#ifdef _OPENMP
#include <omp.h>
#endif
#include "caffe2/core/logging.h"
#include "dnnlowp_op.h"
#include "dnnlowp_partition.h"
#include "fbgemm_pack_op.h"
#include "im2col_dnnlowp.h"
C10_DECLARE_int32(caffe2_dnnlowp_nbits_in_non_outlier);
C10_DECLARE_int32(caffe2_dnnlowp_copy_to_32bit_frequency);
C10_DECLARE_bool(caffe2_dnnlowp_shared_int32_buffer);
// Thresholds to fallback to 32-bit accumulation when 16-bit accumulation
// doesn't provide performance benefits.
C10_DEFINE_double(
caffe2_dnnlowp_acc16_density_threshold,
0.05,
"If density of outlier is higher than this, fallback to 32-bit accumulation");
C10_DEFINE_int32(
caffe2_dnnlowp_acc16_m_threshold,
0,
"If m is smaller than this, fallback to 32-bit accumulation");
C10_DEFINE_int32(
caffe2_dnnlowp_acc16_n_threshold,
0,
"If n is smaller than this, fallback to 32-bit accumulation");
C10_DEFINE_int32(
caffe2_dnnlowp_acc16_k_threshold,
0,
"If k is smaller than this, fallback to 32-bit accumulation");
namespace caffe2 {
using namespace std;
template <bool ReluFused>
ConvDNNLowPAcc16Op<ReluFused>::ConvDNNLowPAcc16Op(
const OperatorDef& operator_def,
Workspace* ws)
: ConvDNNLowPOp<uint8_t, ReluFused>(operator_def, ws),
nbits_in_non_outlier_(this->template GetSingleArgument<int>(
"nbits_in_non_outlier",
FLAGS_caffe2_dnnlowp_nbits_in_non_outlier)),
copy_to_32bit_frequency_(this->template GetSingleArgument<int>(
"copy_to_32bit_frequency",
FLAGS_caffe2_dnnlowp_copy_to_32bit_frequency)) {
if (nbits_in_non_outlier_ == 0) {
LOG(INFO) << "nbits_in_non_outlier == 0 means everything is outlier so we "
"fallback to acc32";
fallback_to_32_bit_accumulation_ = true;
}
}
template <bool ReluFused>
bool ConvDNNLowPAcc16Op<ReluFused>::GetQuantizationParameters_() {
if (fallback_to_32_bit_accumulation_) {
// Short cut if we already know we are falling back to acc32
return BaseType::GetQuantizationParameters_();
}
int kernel_dim = this->KernelDim_();
const auto& filter = InputTensorCPU_(FILTER);
int num_out_channels = filter.dim32(0);
// Check if we should fallback to 32-bit accumulation
// We should do this before GetQuantizationParameters_ to make sure
// GetQuantizationParameters_ initialize things like Wq_packed_ for acc32
// properly.
// We can't fallback if layout is not NHWC or
// if weight is prepacked and the prepacked weight doesn't have acc32.
bool can_fallback_to_32_bit_accumulation =
this->order_ == StorageOrder::NHWC &&
(!this->template InputIsType<Int8ConvDNNLowPPackedWeightBlob>(FILTER) ||
this->template Input<Int8ConvDNNLowPPackedWeightBlob>(FILTER).W);
if (can_fallback_to_32_bit_accumulation) {
const Tensor& X = InputTensorCPU_(INPUT);
int N = X.dim32(0);
auto sizes = this->GetOutputSize(X, filter.dim32(0));
Tensor* Y = OutputTensorCPU_(0, sizes, at::dtype<uint8_t>());
const int output_image_size = this->GetDimsSize(*Y);
// In Skylake, acc16 is not faster when N or K is smaller than 128
constexpr int SKYLAKE_ACC16_N_THRESHOLD_MIN = 128,
SKYLAKE_ACC16_K_THRESHOLD_MIN = 128;
int acc16_n_threshold = FLAGS_caffe2_dnnlowp_acc16_n_threshold;
if (caffe2::GetCpuId().avx512f() &&
acc16_n_threshold < SKYLAKE_ACC16_N_THRESHOLD_MIN) {
acc16_n_threshold = SKYLAKE_ACC16_N_THRESHOLD_MIN;
}
int acc16_k_threshold = FLAGS_caffe2_dnnlowp_acc16_k_threshold;
if (caffe2::GetCpuId().avx512f() &&
acc16_k_threshold < SKYLAKE_ACC16_K_THRESHOLD_MIN) {
acc16_k_threshold = SKYLAKE_ACC16_K_THRESHOLD_MIN;
}
if (N * output_image_size < FLAGS_caffe2_dnnlowp_acc16_m_threshold) {
C10_LOG_FIRST_N(INFO, 10)
<< "M " << N * output_image_size << " of Conv layer with weight blob "
<< this->debug_def().input(FILTER) << " is smaller than threshold "
<< FLAGS_caffe2_dnnlowp_acc16_m_threshold
<< " . Falling back to acc32";
fallback_to_32_bit_accumulation_ = true;
}
if (!fallback_to_32_bit_accumulation_ &&
num_out_channels / group_ < acc16_n_threshold) {
C10_LOG_FIRST_N(INFO, 10)
<< "N " << num_out_channels / group_
<< " of Conv layer with weight blob "
<< this->debug_def().input(FILTER) << " is smaller than threshold "
<< acc16_n_threshold << " . Falling back to acc32";
fallback_to_32_bit_accumulation_ = true;
}
if (!fallback_to_32_bit_accumulation_ && kernel_dim < acc16_k_threshold) {
C10_LOG_FIRST_N(INFO, 10)
<< "K " << kernel_dim << " of Conv layer with weight blob "
<< this->debug_def().input(FILTER) << " is smaller than threshold "
<< acc16_k_threshold << " . Falling back to acc32";
fallback_to_32_bit_accumulation_ = true;
}
if (!fallback_to_32_bit_accumulation_ &&
this->template InputIsType<Int8ConvDNNLowPPackedWeightBlob>(FILTER) &&
!this->template Input<Int8ConvDNNLowPPackedWeightBlob>(FILTER)
.W_acc16) {
C10_LOG_FIRST_N(INFO, 10)
<< "Falling back to acc32 because packed weight for acc16 is not "
"available";
fallback_to_32_bit_accumulation_ = true;
}
}
if (!BaseType::GetQuantizationParameters_()) {
return false;
}
if (fallback_to_32_bit_accumulation_) {
return true;
}
if (!Wq_acc16_packed_ &&
this->template InputIsType<Int8ConvDNNLowPPackedWeightBlob>(FILTER)) {
CAFFE_ENFORCE_EQ(
this->order_,
StorageOrder::NHWC,
"Pre-packed weight only works with NHWC layout");
// If the input is already packed
const auto& packed_filter =
this->template Input<Int8ConvDNNLowPPackedWeightBlob>(FILTER);
Wq_outlier_ = packed_filter.W_outlier;
Wq_acc16_packed_ = packed_filter.W_acc16;
if (nbits_in_non_outlier_ != packed_filter.nbits_in_non_outlier) {
C10_LOG_FIRST_N(WARNING, 10)
<< "nbits_in_non_outlier in packed weight "
<< packed_filter.nbits_in_non_outlier
<< " doesn't match with nbits_in_non_outlier specified in operator "
<< nbits_in_non_outlier_;
}
first_invocation_ = false;
return true;
}
// Separate out outliers
if (!Wq_outlier_ && this->order_ == StorageOrder::NHWC &&
nbits_in_non_outlier_ < 8) {
CAFFE_ENFORCE(!W_quantized_.empty());
int outlier_cnt = CountOutliers(
group_,
kernel_dim,
num_out_channels,
nbits_in_non_outlier_,
W_quantized_);
C10_LOG_FIRST_N(INFO, 10)
<< "Proportion of outlier for Conv layer with weight blob "
<< this->debug_def().input(FILTER) << " is "
<< static_cast<float>(outlier_cnt) / W_quantized_.size();
C10_LOG_FIRST_N(INFO, 10)
<< "nbits_in_non_outlier " << nbits_in_non_outlier_
<< " copy_to_32bit_frequency " << copy_to_32bit_frequency_;
if (can_fallback_to_32_bit_accumulation &&
static_cast<float>(outlier_cnt) / W_quantized_.size() >
FLAGS_caffe2_dnnlowp_acc16_density_threshold) {
C10_LOG_FIRST_N(INFO, 10)
<< "Density of outliers is higher than threshold "
<< FLAGS_caffe2_dnnlowp_acc16_density_threshold
<< " . Falling back to acc32";
fallback_to_32_bit_accumulation_ = true;
Wq_outlier_.reset();
// We need to call GetQuantizationParameters_ again to pack for acc32
return BaseType::GetQuantizationParameters_();
}
Wq_outlier_.reset(ExtractOutlierMatrix(
group_,
kernel_dim,
num_out_channels,
nbits_in_non_outlier_,
W_quantized_));
}
bool packW = this->order_ == StorageOrder::NHWC && GetCpuId().avx2();
if (first_invocation_) {
if (!packW) {
string reason;
if (this->order_ != StorageOrder::NHWC) {
reason = "fbgemm only supports NHWC layout";
} else if (!GetCpuId().avx2()) {
reason = "fbgemm only supports AVX2+";
} else {
assert(false);
}
if (!reason.empty()) {
static int log_occurences = 0;
if (log_occurences < 32) {
++log_occurences;
C10_LOG_FIRST_N(WARNING, 10)
<< "Conv with weight " << this->debug_def().input(FILTER)
<< " falls back to slow path because " << reason;
}
}
}
if (nbits_in_non_outlier_ < 8 && this->order_ != StorageOrder::NHWC) {
static int log_occurences = 0;
if (log_occurences < 32) {
++log_occurences;
C10_LOG_FIRST_N(WARNING, 10)
<< "Outlier-aware quantization only supports "
"NHWC layout";
}
}
first_invocation_ = false;
}
if (packW && !Wq_acc16_packed_) {
// NOLINTNEXTLINE(modernize-make-shared)
Wq_acc16_packed_.reset(new fbgemm::PackBMatrix<int8_t, int16_t>(
fbgemm::matrix_op_t::Transpose,
group_ * kernel_dim,
num_out_channels / group_,
W_quantized_.data(),
kernel_dim, // ld
nullptr, // pmat
group_));
vector<int8_t>().swap(W_quantized_);
}
return true;
}
template <bool ReluFused>
bool ConvDNNLowPAcc16Op<ReluFused>::RunOnDeviceWithOrderNCHW() {
VLOG(2) << "Running DNNLOWP_ACC16 Conv";
using namespace dnnlowp;
// Get quantization parameters
if (!GetQuantizationParameters_()) {
return false;
}
if (fallback_to_32_bit_accumulation_) {
return BaseType::RunOnDeviceWithOrderNCHW();
}
const Tensor& X = InputTensorCPU_(INPUT);
auto& filter = InputTensorCPU_(FILTER);
const int N = X.dim32(0), C = X.dim32(1);
CAFFE_ENFORCE_EQ(X.ndim(), filter.ndim());
const int M = filter.dim32(0);
CAFFE_ENFORCE_EQ(
C,
filter.dim32(1) * group_,
"Convolution op: input channels does not match: # of input channels ",
C,
" is not equal to kernel channels * group:",
filter.dim32(1),
"*",
group_);
CAFFE_ENFORCE_EQ(
M % group_,
0,
"The number of output channels is not divisible by group.");
auto sizes = this->GetOutputSize(X, filter.dim32(0));
Tensor* Y = OutputTensorCPU_(0, sizes, at::dtype<uint8_t>());
const vector<int> input_dims = GetDims(X);
const vector<int> output_dims = GetDims(*Y);
const int input_image_size = this->GetDimsSize(X);
const int output_image_size = this->GetDimsSize(*Y);
// The dimension of each kernel
const int kernel_dim = this->KernelDim_();
vector<int> img_shape;
img_shape.assign(X.sizes().begin() + 1, X.sizes().end());
vector<int> buffer_shape;
buffer_shape.push_back(kernel_dim);
buffer_shape.insert(
buffer_shape.end(), output_dims.begin(), output_dims.end());
buffer_shape.insert(buffer_shape.begin(), dnnlowp_get_max_threads());
if (this->kernel_.size() != 2) {
SetDeviceTensor(img_shape, &(this->img_shape_device_));
SetDeviceTensor(buffer_shape, &(this->col_buffer_shape_device_));
}
const int col_buffer_size = kernel_dim * output_image_size;
// The offset corresponding to a single input image, and a single output
// image.
const int input_offset = C / group_ * input_image_size;
// The col buffer is stored in CHW order as well - kernel_dim, and the
// height and width.
const uint8_t* Xdata = X.template data<uint8_t>();
auto f = [&](Tensor* col_buffer, vector<int32_t>* Y_int32) {
col_buffer->Resize(buffer_shape);
uint8_t* col_buffer_data = col_buffer->template mutable_data<uint8_t>();
Y_int32->resize(M * output_image_size * dnnlowp_get_max_threads());
vector<int> buffer_shape_per_thread(
buffer_shape.begin() + 1, buffer_shape.end());
// Im2Col, followed by gemm.
uint8_t* Y_data = Y->template mutable_data<uint8_t>();
this->column_offsets_->resize(
output_image_size * dnnlowp_get_max_threads());
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int image_id = 0; image_id < N; ++image_id) {
int tid = dnnlowp_get_thread_num();
for (int group_id = 0; group_id < group_; ++group_id) {
if (this->kernel_.size() == 2) {
math::Im2ColNCHW<uint8_t>(
C / group_,
input_dims[0],
input_dims[1],
kernel_h(),
kernel_w(),
dilation_h(),
dilation_w(),
pad_t(),
pad_l(),
pad_b(),
pad_r(),
stride_h(),
stride_w(),
Xdata + (group_ * image_id + group_id) * input_offset,
col_buffer_data + tid * col_buffer_size,
&context_,
in_qparams_[INPUT].zero_point);
} else {
math::Im2ColNdNCHW<uint8_t>(
this->kernel_.size(),
C * input_image_size,
col_buffer_size,
img_shape.data(),
buffer_shape_per_thread.data(),
this->kernel_.data(),
this->stride_.data(),
this->dilation_.data(),
this->pads_.data(),
Xdata + (group_ * image_id + group_id) * input_offset,
col_buffer_data + tid * col_buffer_size,
&context_,
in_qparams_[INPUT].zero_point);
}
// quantize col_buffer
uint8_t* col_buffer_private = col_buffer_data + tid * col_buffer_size;
// main GEMM
int32_t* Y_int32_temp = Y_int32->data() +
((M / group_) * group_id + M * tid) * output_image_size;
int8_t* W_quantized_group =
W_quantized_.data() + (M / group_) * group_id * kernel_dim;
static int log_occurences = 0;
if (log_occurences < 32) {
++log_occurences;
C10_LOG_FIRST_N(WARNING, 10)
<< "Consider using DNNLOWP instead of DNNLOWP_ACC16 engine since "
"we're falling back to a slow path because of NCHW layout";
}
for (int i = 0; i < M / group_; ++i) {
for (int j = 0; j < output_image_size; ++j) {
int32_t int32_sum = 0;
int16_t int16_sum = 0;
for (int k = 0; k < kernel_dim; ++k) {
// NOLINTNEXTLINE(bugprone-signed-char-misuse)
int32_t w = W_quantized_group[i * kernel_dim + k];
int32_t x = col_buffer_private[k * output_image_size + j];
#ifdef DNNLOWP_ACC16_IN_SLOW_PATH
int16_sum = std::max<int32_t>(
numeric_limits<int16_t>::min(),
std::min<int32_t>(
numeric_limits<int16_t>::max(), int16_sum + x * w));
if (k % copy_to_32bit_frequency_ ==
copy_to_32bit_frequency_ - 1) {
int32_sum += int16_sum;
int16_sum = 0;
}
#else
int32_sum += w * x;
#endif
}
Y_int32_temp[i * output_image_size + j] = int32_sum + int16_sum;
}
}
this->RunOnDeviceEpilogueNCHW_(
col_buffer_private,
Y_int32_temp,
Y_data + (M * image_id + M / group_ * group_id) * output_image_size,
M / group_ * group_id,
group_id);
} // for each group
} // for each image_id
}; // f
this->RunWithSharedBuffer_(&col_buffer_, &(this->Y_int32_), f);
PropagateOutputTensorQuantizationParams(this, 0, out_qparams_);
this->MeasureQuantizationError_();
return true;
} // RunOnDeviceWithOrderNCHWAndType_
static void conv_nhwc_acc16_ref_(
int num_groups,
int N,
int output_image_size,
int M,
int kernel_dim,
const uint8_t* col_buffer,
const int8_t* W,
int32_t* Y
#ifdef DNNLOWP_ACC16_IN_SLOW_PATH
,
OperatorBase* op
#endif
) {
#ifdef DNNLOWP_ACC16_IN_SLOW_PATH
uint64_t underflow_cnt = 0, overflow_cnt = 0;
#endif
for (int group_id = 0; group_id < num_groups; ++group_id) {
for (int i = 0; i < N * output_image_size; ++i) {
for (int j = 0; j < M / num_groups; ++j) {
int32_t int32_sum = 0;
int16_t int16_sum = 0;
#ifdef DNNLOWP_ACC16_IN_SLOW_PATH
bool overflowed = false, underflowed = false;
#endif
for (int k = 0; k < kernel_dim; ++k) {
int32_t x = col_buffer[(i * num_groups + group_id) * kernel_dim + k];
// NOLINTNEXTLINE(bugprone-signed-char-misuse)
int32_t w = W[(group_id * (M / num_groups) + j) * kernel_dim + k];
#ifdef DNNLOWP_ACC16_IN_SLOW_PATH
if (!overflowed && !underflowed) {
if (int16_sum + x * w > numeric_limits<int16_t>::max()) {
overflowed = true;
} else if (int16_sum + x * w < numeric_limits<int16_t>::min()) {
underflowed = true;
}
}
int16_sum = std::max<int32_t>(
numeric_limits<int16_t>::min(),
std::min<int32_t>(
numeric_limits<int16_t>::max(), int16_sum + x * w));
if (k % copy_to_32bit_frequency_ == copy_to_32bit_frequency_ - 1) {
int32_sum += int16_sum;
int16_sum = 0;
}
#else
int32_sum += x * w;
#endif
}
Y[i * M + group_id * (M / num_groups) + j] = int32_sum + int16_sum;
#ifdef DNNLOWP_ACC16_IN_SLOW_PATH
if (overflowed) {
++overflow_cnt;
} else if (underflowed) {
++underflow_cnt;
}
#ifdef DNNLOWP_DETAILED_LOG_IN_ACC16_SLOW_PATH
if (overflowed || underflowed) {
int32_t sum = 0;
for (int k = 0; k < kernel_dim; ++k) {
int32_t x =
col_buffer[(i * num_groups + group_id) * kernel_dim + k];
int32_t w = W[k * M + group_id * (M / num_groups) + j];
LOG(INFO) << k << ": " << sum << " + " << x << " * " << w << " = "
<< sum + x * w;
sum += x * w;
}
}
#endif
#endif
}
}
} // for each group
#ifdef DNNLOWP_ACC16_IN_SLOW_PATH
LOG(INFO) << op->debug_def().input(1) << " underflow_cnt " << underflow_cnt
<< " (" << (float)underflow_cnt / (N * output_image_size * M) * 100
<< ") overflow_cnt " << overflow_cnt << " ("
<< (float)overflow_cnt / (N * output_image_size * M) * 100 << ")";
#endif
}
template <bool ReluFused>
template <typename PackAMatrix, fbgemm::QuantizationGranularity Q_GRAN>
void ConvDNNLowPAcc16Op<ReluFused>::DispatchFBGEMM_(
PackAMatrix& packA,
const uint8_t* col_buffer_data,
vector<int32_t>* Y_int32,
uint8_t* Y_uint8_data) {
// This function is called within an OpenMP region
auto& filter = InputTensorCPU_(FILTER);
const int M = filter.dim32(0);
assert(Wq_acc16_packed_.get());
int kernel_dim = this->KernelDim_();
int nthreads = dnnlowp_get_num_threads();
int tid = dnnlowp_get_thread_num();
using namespace fbgemm;
DoNothing<> doNothingObj{};
ReQuantizeOutput<ReluFused, Q_GRAN> reqObj(
doNothingObj,
this->requantization_multipliers_.data(),
out_qparams_.zero_point,
// column_offsets_ empty means column_offsets_ are folded into bias
this->column_offsets_->empty() ? 0 : in_qparams_[INPUT].zero_point,
this->filter_zero_points_.data(),
packA.getRowOffsetBuffer(),
this->column_offsets_->empty() ? nullptr : this->column_offsets_->data(),
InputSize() == 3 ? this->b_quantized_data_ : nullptr,
M,
group_);
if (nbits_in_non_outlier_ < 8) {
DoSpmdmOnInpBuffer<
typename ReQuantizeOutput<ReluFused>::outType,
int32_t,
ReQuantizeOutput<ReluFused, Q_GRAN>>
spmdmObj(
reqObj, col_buffer_data, group_ * kernel_dim, *Wq_outlier_, group_);
fbgemmPacked(
packA,
*Wq_acc16_packed_,
Y_uint8_data,
Y_int32->data(),
M,
spmdmObj,
tid,
nthreads);
} else {
fbgemmPacked(
packA,
*Wq_acc16_packed_,
Y_uint8_data,
Y_int32->data(),
M,
reqObj,
tid,
nthreads);
}
}
template <bool ReluFused>
void ConvDNNLowPAcc16Op<ReluFused>::ConvOutlier_(
const uint8_t* col_buffer,
vector<int32_t>* Y_int32) {
if (nbits_in_non_outlier_ < 8) {
const Tensor& X = InputTensorCPU_(INPUT);
auto& filter = InputTensorCPU_(FILTER);
Tensor* Y = OutputTensorCPU_(0);
const int N = X.dim32(0);
const int M = filter.dim32(0);
const int kernel_dim = this->KernelDim_();
const int output_image_size = this->GetDimsSize(*Y);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int group_begin, group_end, i_begin, i_end;
this->PartitionGroupedNHWCConv_(
&group_begin,
&group_end,
&i_begin,
&i_end,
group_,
N * output_image_size,
dnnlowp_get_num_threads(),
dnnlowp_get_thread_num());
for (int group_id = group_begin; group_id < group_end; ++group_id) {
CAFFE_ENFORCE_EQ(Wq_outlier_->NumOfRows(), kernel_dim);
// Dense-matrix times sparse-matrix multiplication for outlier
fbgemm::block_type_t block = {
0, i_end - i_begin, group_id * (M / group_), M / group_};
Wq_outlier_->SpMDM(
block,
col_buffer + (i_begin * group_ + group_id) * kernel_dim,
group_ * kernel_dim,
true /* accumulate */,
Y_int32->data() + i_begin * M + group_id * (M / group_),
M);
}
}
}
}
template <bool ReluFused>
bool ConvDNNLowPAcc16Op<ReluFused>::RunOnDeviceWithOrderNHWC() {
CAFFE_ENFORCE_LE(
this->kernel_.size(),
3,
"Only 1-3d convolution is supported for NHWC storage type");
using namespace dnnlowp;
#ifdef DNNLOWP_MEASURE_TIME_BREAKDOWN
chrono::time_point<chrono::system_clock> t_very_begin, t_begin, t_end;
t_begin = chrono::system_clock::now();
t_very_begin = t_begin;
#endif
// Get quantization parameters
if (!GetQuantizationParameters_()) {
return false;
}
if (fallback_to_32_bit_accumulation_) {
return BaseType::RunOnDeviceWithOrderNHWC();
}
#ifdef DNNLOWP_MEASURE_TIME_BREAKDOWN
t_end = chrono::system_clock::now();
double dt = chrono::duration<double>(t_end - t_begin).count();
LOG(INFO) << "this=" << this << " get_quant_params: " << dt * 1e3 << " ms";
#endif
const Tensor& X = InputTensorCPU_(INPUT);
auto& filter = InputTensorCPU_(FILTER);
const int N = X.dim32(0), C = X.dim32(X.ndim() - 1);
CAFFE_ENFORCE_EQ(X.ndim(), filter.ndim());
const int M = filter.dim32(0);
CAFFE_ENFORCE_EQ(filter.dim32(filter.ndim() - 1), C / group_);
auto sizes = this->GetOutputSize(X, filter.dim32(0));
Tensor* Y = OutputTensorCPU_(0, sizes, at::dtype<uint8_t>());
// The dimension of each kernel
const int kernel_dim = this->KernelDim_();
// The output image size is the spatial size of the output.
const int output_image_size = this->GetDimsSize(*Y);
// The col buffer is stored in HWC order as well - kernel_dim, and the height
// and width.
auto f = [&](Tensor* col_buffer, vector<int32_t>* Y_int32) {
Y_int32->resize(Y->numel());
#ifdef DNNLOWP_MEASURE_TIME_BREAKDOWN
t_begin = chrono::system_clock::now();
#endif
bool no_im2col = this->NoIm2ColNHWC_();
// Im2Col, followed by gemm.
const uint8_t* Xdata = X.template data<uint8_t>();
const uint8_t* col_buffer_data =
no_im2col ? Xdata : this->Im2ColNHWC_(col_buffer);
#ifdef DNNLOWP_MEASURE_TIME_BREAKDOWN
t_end = chrono::system_clock::now();
dt = chrono::duration<double>(t_end - t_begin).count();
LOG(INFO) << "this=" << this << " im2col: " << dt * 1e3 << " ms";
t_begin = chrono::system_clock::now();
#endif
using namespace fbgemm;
int row_offset_size_per_thread = -1;
int x_pack_buf_size_per_thread = -1;
if (Wq_acc16_packed_) {
if (!this->quantize_groupwise_ && this->filter_zero_points_[0] == 0) {
x_pack_buf_size_per_thread =
PackAMatrix<uint8_t, int16_t>::packedBufferSize();
X_pack_buf_.resize(
dnnlowp_get_max_threads() * x_pack_buf_size_per_thread);
} else {
row_offset_size_per_thread =
PackAWithRowOffset<uint8_t, int16_t>::rowOffsetBufferSize();
x_pack_buf_size_per_thread =
PackAWithRowOffset<uint8_t, int16_t>::packedBufferSize();
row_offsets_.resize(
dnnlowp_get_max_threads() * row_offset_size_per_thread);
X_pack_buf_.resize(
dnnlowp_get_max_threads() * x_pack_buf_size_per_thread);
}
}
uint8_t* Y_uint8_data = Y->template mutable_data<uint8_t>();
// Main GEMM for non-outlier
if (Wq_acc16_packed_)
#ifdef _OPENMP
#pragma omp parallel
#endif
{
// fast path
int tid = dnnlowp_get_thread_num();
// no im2col fusion
if (!this->quantize_groupwise_ && this->filter_zero_points_[0] == 0) {
PackAMatrix<uint8_t, int16_t> packA(
matrix_op_t::NoTranspose,
N * output_image_size,
group_ * kernel_dim,
col_buffer_data,
group_ * kernel_dim,
X_pack_buf_.data() + tid * x_pack_buf_size_per_thread,
group_);
if (this->quantize_groupwise_) {
DispatchFBGEMM_<
PackAMatrix<uint8_t, int16_t>,
QuantizationGranularity::GROUP>(
packA, col_buffer_data, Y_int32, Y_uint8_data);
} else {
DispatchFBGEMM_<
PackAMatrix<uint8_t, int16_t>,
QuantizationGranularity::TENSOR>(
packA, col_buffer_data, Y_int32, Y_uint8_data);
}
} else {
// no im2col fusion
PackAWithRowOffset<uint8_t, int16_t> packA(
matrix_op_t::NoTranspose,
N * output_image_size,
group_ * kernel_dim,
col_buffer_data,
group_ * kernel_dim,
X_pack_buf_.data() + tid * x_pack_buf_size_per_thread,
group_,
row_offsets_.data() + tid * row_offset_size_per_thread);
if (this->quantize_groupwise_) {
DispatchFBGEMM_<
PackAWithRowOffset<uint8_t, int16_t>,
QuantizationGranularity::GROUP>(
packA, col_buffer_data, Y_int32, Y_uint8_data);
} else {
DispatchFBGEMM_<
PackAWithRowOffset<uint8_t, int16_t>,
QuantizationGranularity::TENSOR>(
packA, col_buffer_data, Y_int32, Y_uint8_data);
}
}
} else {
// slow path
conv_nhwc_acc16_ref_(
group_,
N,
output_image_size,
M,
kernel_dim,
col_buffer_data,
W_quantized_.data(),
Y_int32->data()
#ifdef DNNLOWP_ACC16_IN_SLOW_PATH
,
this
#endif
);
} // slow path
#ifdef DNNLOWP_MEASURE_TIME_BREAKDOWN
t_end = chrono::system_clock::now();
dt = chrono::duration<double>(t_end - t_begin).count();
double ops = 2. * N * output_image_size * M * kernel_dim;
double gops = ops / dt / 1e9;
LOG(INFO) << "this=" << this << " GEMM: " << dt * 1e3 << " ms " << gops
<< " gops";
t_begin = chrono::system_clock::now();
#endif
if (!Wq_acc16_packed_) {
ConvOutlier_(col_buffer_data, Y_int32);
}
#ifdef DNNLOWP_MEASURE_TIME_BREAKDOWN
t_end = chrono::system_clock::now();
dt = chrono::duration<double>(t_end - t_begin).count();
LOG(INFO) << "this=" << this << " out-lier: " << dt * 1e3 << " ms";
t_begin = chrono::system_clock::now();
#endif
if (!Wq_acc16_packed_) {
this->RunOnDeviceEpilogueNHWC_(col_buffer_data, Y_int32->data());
} else {
PropagateOutputTensorQuantizationParams(this, 0, out_qparams_);
}
}; // f
this->RunWithSharedBuffer_(&col_buffer_, &(this->Y_int32_), f);
#ifdef DNNLOWP_MEASURE_TIME_BREAKDOWN
t_end = chrono::system_clock::now();
dt = chrono::duration<double>(t_end - t_begin).count();
LOG(INFO) << "this=" << this << " prologue: " << dt * 1e3 << " ms";
t_begin = chrono::system_clock::now();
t_end = chrono::system_clock::now();
dt = chrono::duration<double>(t_end - t_very_begin).count();
double ops = 2. * N * output_image_size * M * kernel_dim;
double gops = ops / dt / 1e9;
LOG(INFO) << "this=" << this << " " << this->debug_def().type()
<< " output=" << this->debug_def().output(0) << " "
<< N * output_image_size << "x" << M << "x" << kernel_dim
<< " G=" << group_ << " C/G=" << C / group_ << " K/G=" << M / group_
<< " R=" << kernel_h() << " S=" << kernel_w() << " : " << dt * 1e3
<< " ms " << gops << " gops";
#endif
this->MeasureQuantizationError_();
return true;
}
REGISTER_CPU_OPERATOR_WITH_ENGINE(
Conv,
DNNLOWP_ACC16,
ConvDNNLowPAcc16Op<false>);
REGISTER_CPU_OPERATOR_WITH_ENGINE(
ConvRelu,
DNNLOWP_ACC16,
ConvDNNLowPAcc16Op<true>);
REGISTER_CPU_OPERATOR_WITH_ENGINE(
Int8Conv,
DNNLOWP_ACC16,
ConvDNNLowPAcc16Op<false>);
REGISTER_CPU_OPERATOR_WITH_ENGINE(
Int8ConvRelu,
DNNLOWP_ACC16,
ConvDNNLowPAcc16Op<true>);
} // namespace caffe2
|