1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
#pragma once
#include "caffe2/quantization/server/conv_dnnlowp_op.h"
#include "fbgemm/Fbgemm.h"
namespace caffe2 {
/**
* Quantized Conv operator with 16-bit accumulation.
* We'll encounter saturation but this will be faster in Intel CPUs
*/
template <bool ReluFused = false>
class ConvDNNLowPAcc16Op final : public ConvDNNLowPOp<std::uint8_t, ReluFused> {
public:
USE_CONV_POOL_BASE_FUNCTIONS(CPUContext);
ConvDNNLowPAcc16Op(const OperatorDef& operator_def, Workspace* ws);
using BaseType = ConvDNNLowPOp<std::uint8_t, ReluFused>;
using BaseType::BIAS;
using BaseType::col_buffer_;
using BaseType::FILTER;
using BaseType::in_qparams_;
using BaseType::INPUT;
using BaseType::InputTensorCPU_;
using BaseType::out_qparams_;
using BaseType::OutputTensorCPU_;
using BaseType::row_offsets_;
using BaseType::W_quantized_;
using BaseType::X_pack_buf_;
using BaseType::Y_int32_;
private:
bool RunOnDeviceWithOrderNCHW() override;
bool RunOnDeviceWithOrderNHWC() override;
bool GetQuantizationParameters_();
template <typename PackAMatrix, fbgemm::QuantizationGranularity Q_GRAN>
void DispatchFBGEMM_(
PackAMatrix& packA,
const std::uint8_t* col_buffer_data,
vector<std::int32_t>* Y_int32,
uint8_t* Y_uint8_data);
void ConvOutlier_(
const std::uint8_t* col_buffer,
vector<std::int32_t>* Y_int32);
bool Acc16() const override {
return !fallback_to_32_bit_accumulation_;
}
std::shared_ptr<fbgemm::PackBMatrix<std::int8_t, std::int16_t>>
Wq_acc16_packed_;
// Wq outlier in CSC format
std::shared_ptr<fbgemm::CompressedSparseColumn> Wq_outlier_;
// Threshold to decide whether a weight is outlier.
// For example, if nbits_in_non_outlier_ == 7, w is an outlier if w < -64 or
// w >= 64.
// nbits_in_non_outlier_ == 0 means everything is outlier.
// nbits_in_non_outlier_ == 8 means nothing is outlier.
int nbits_in_non_outlier_;
int copy_to_32bit_frequency_;
bool first_invocation_{true};
// If outlier matrix is not sparse enough, using 16-bit accumulation won't
// give speedup due to too much overhead of sparse matrix multiplication or
// sparse convolution anyway, so fallback to 32-bit accumulation
bool fallback_to_32_bit_accumulation_{false};
}; // class ConvDNNLowPAcc16Op
} // namespace caffe2
|