File: conv_groupwise_dnnlowp_acc16_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (335 lines) | stat: -rw-r--r-- 11,664 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335


import collections

import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, utils, workspace
from caffe2.quantization.server import utils as dnnlowp_utils
from caffe2.quantization.server.dnnlowp_test_utils import (
    check_quantized_results_close,
    run_conv_or_fc
)
from hypothesis import assume, given, settings


dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
workspace.GlobalInit(
    [
        "caffe2",
        "--caffe2_omp_num_threads=11",
        # Increase this threshold to test acc16 with randomly generated data
        "--caffe2_dnnlowp_acc16_density_threshold=0.5",
    ]
)


class GroupWiseDNNLowPOpConvAcc16OpTest(hu.HypothesisTestCase):
    # correctness test with no quantization error in inputs
    @given(
        stride=st.integers(1, 2),
        pad=st.integers(0, 2),
        kernel=st.integers(1, 5),
        dilation=st.integers(1, 2),
        size=st.integers(10, 16),
        group=st.integers(1, 4),
        input_channels_per_group=st.sampled_from([2, 3, 4, 5, 8, 16, 32]),
        output_channels_per_group=st.integers(2, 16),
        batch_size=st.integers(0, 3),
        order=st.sampled_from(["NCHW", "NHWC"]),
        share_col_buffer=st.booleans(),
        preserve_activation_sparsity=st.booleans(),
        preserve_weight_sparsity=st.booleans(),
        **hu.gcs_cpu_only
    )
    @settings(deadline=None)
    def test_groupwise_dnnlowp_conv_acc16_int(
        self,
        stride,
        pad,
        kernel,
        dilation,
        size,
        group,
        input_channels_per_group,
        output_channels_per_group,
        batch_size,
        order,
        share_col_buffer,
        preserve_activation_sparsity,
        preserve_weight_sparsity,
        gc,
        dc,
    ):
        assume(group == 1 or dilation == 1)
        assume(size >= dilation * (kernel - 1) + 1)

        input_channels = input_channels_per_group * group
        output_channels = output_channels_per_group * group

        # X and W have scale 1, so exactly represented after quantization
        # This was made sure by having at least one 0 and one 255 for unsigned
        # 8-bit tensors, and at least one -128 and one 127 for signed 8-bit
        # tensors.
        # Since fbgemm_acc16 accumulates to 16-bit, To avoid overflow, we use
        # small numbers except for those 0, 255, -128, and 127, for this test
        # We also make sure 255, -128, or 127 are not multiplied together by
        # putting them in different input channels and the corresponding input
        # channel in other matrix is 0.
        # For example, we put 255 in input channel 1 in X, so we make the
        # corresponding input channel in W all zeros.
        X_min = 0 if preserve_activation_sparsity else -77
        X_max = X_min + 255
        X = np.random.rand(batch_size, size, size, input_channels) * 4 + X_min
        X = np.round(X).astype(np.float32)
        X[..., 0] = X_min
        if batch_size != 0:
            X[0, 0, 0, 1] = X_max

        if preserve_weight_sparsity:
            W_min = -128
            W_max = 100
        else:
            W_min = -100
            W_max = W_min + 255
        W = (
            np.random.rand(output_channels, kernel, kernel, input_channels_per_group)
            * 4
            - 2
            + W_min
            + 128
        )
        W = np.round(W).astype(np.float32)
        W[..., 1] = W_min + 128  # "zeros"
        for g in range(group):
            W[g * output_channels_per_group, 0, 0, 0] = W_min
            W[g * output_channels_per_group + 1, 0, 0, 0] = W_max
            if not preserve_weight_sparsity:
                W[
                    g * output_channels_per_group : (g + 1) * output_channels_per_group,
                ] += g

        if order == "NCHW":
            X = utils.NHWC2NCHW(X)
            W = utils.NHWC2NCHW(W)

        # No input quantization error in bias
        b = np.round(np.random.randn(output_channels)).astype(np.float32)

        Output = collections.namedtuple("Output", ["Y", "op_type", "engine", "order"])
        outputs = []

        op_engine_list = [
            ("Conv", ""),
            ("Conv", "DNNLOWP_ACC16"),
            ("Int8Conv", "DNNLOWP_ACC16"),
        ]

        for op_type, engine in op_engine_list:
            net = core.Net("test_net")

            do_quantize = "DNNLOWP" in engine
            do_dequantize = "DNNLOWP" in engine

            if do_quantize:
                quantize = core.CreateOperator(
                    "Quantize",
                    ["X"],
                    ["X_q"],
                    preserve_activation_sparsity=preserve_activation_sparsity,
                    engine="DNNLOWP",
                    device_option=gc,
                )
                net.Proto().op.extend([quantize])

            conv = core.CreateOperator(
                op_type,
                ["X_q" if do_quantize else "X", "W", "b"],
                ["Y_q" if do_dequantize else "Y"],
                stride=stride,
                kernel=kernel,
                dilation=dilation,
                pad=pad,
                order=order,
                shared_buffer=(1 if share_col_buffer else 0),
                preserve_activation_sparsity=preserve_activation_sparsity,
                preserve_weight_sparsity=preserve_weight_sparsity,
                engine=engine,
                group=group,
                quantize_groupwise=1,
                device_option=gc,
            )
            if do_dequantize:
                # groupwise quantization only works with static quantization
                # so we need to set quantization parameters
                dnnlowp_utils.add_quantization_param_args(
                    conv, outputs[0][0], preserve_activation_sparsity
                )
            net.Proto().op.extend([conv])

            if do_dequantize:
                dequantize = core.CreateOperator(
                    "Dequantize", ["Y_q"], ["Y"], engine="DNNLOWP", device_option=gc
                )
                net.Proto().op.extend([dequantize])

            run_conv_or_fc(
                self, None, net, X, W, b, op_type, engine, order, gc, outputs
            )

        check_quantized_results_close(outputs, symmetric=preserve_activation_sparsity)

    @given(
        stride=st.integers(1, 2),
        pad=st.integers(0, 2),
        kernel=st.integers(1, 5),
        dilation=st.integers(1, 2),
        size=st.integers(10, 16),
        group=st.integers(1, 4),
        input_channels_per_group=st.sampled_from([2, 3, 4, 5, 8, 16, 32]),
        output_channels_per_group=st.integers(2, 16),
        batch_size=st.integers(0, 3),
        order=st.sampled_from(["NHWC"]),
        prepack_weight=st.booleans(),
        nbits_in_non_outlier=st.sampled_from((0, 1, 6, 8)),
        share_col_buffer=st.booleans(),
        **hu.gcs_cpu_only
    )
    def test_groupwise_dnnlowp_conv_acc16_outlier(
        self,
        stride,
        pad,
        kernel,
        dilation,
        size,
        group,
        input_channels_per_group,
        output_channels_per_group,
        batch_size,
        order,
        prepack_weight,
        nbits_in_non_outlier,
        share_col_buffer,
        gc,
        dc,
    ):
        assume(group == 1 or dilation == 1)
        assume(size >= dilation * (kernel - 1) + 1)

        input_channels = input_channels_per_group * group
        output_channels = output_channels_per_group * group

        X_min = -77
        X_max = X_min + 255
        X = np.random.rand(batch_size, size, size, input_channels) * 4 + X_min
        X = np.round(X).astype(np.float32)
        X[..., 0] = X_min
        if batch_size != 0:
            X[0, 0, 0, 1] = X_max

        W_min = -100
        W_max = W_min + 255
        W = (
            np.random.rand(output_channels, kernel, kernel, input_channels_per_group)
            * 4
            - 2
            + W_min
            + 128
        )
        W = np.round(W).astype(np.float32)
        W[..., 1] = W_min + 128  # "zeros"
        for g in range(group):
            W[g * output_channels_per_group, 0, 0, 0] = W_min
            W[g * output_channels_per_group + 1, 0, 0, 0] = W_max
            W[g * output_channels_per_group : (g + 1) * output_channels_per_group,] += g

        if order == "NCHW":
            X = utils.NHWC2NCHW(X)
            W = utils.NHWC2NCHW(W)

        b = np.round(np.random.randn(output_channels)).astype(np.float32)

        Output = collections.namedtuple("Output", ["Y", "op_type", "engine", "order"])
        outputs = []

        op_engine_list = [
            ("Conv", ""),
            ("Conv", "DNNLOWP_ACC16"),
            ("Int8Conv", "DNNLOWP_ACC16"),
        ]

        for op_type, engine in op_engine_list:
            init_net = core.Net("test_init_net")
            net = core.Net("test_net")

            do_quantize = "DNNLOWP" in engine
            do_dequantize = "DNNLOWP" in engine
            do_prepack_weight = "DNNLOWP" in engine and prepack_weight

            if do_quantize:
                quantize = core.CreateOperator(
                    "Quantize", ["X"], ["X_q"], engine="DNNLOWP", device_option=gc
                )
                net.Proto().op.extend([quantize])

            if do_prepack_weight:
                X_min = 0 if X.size == 0 else X.min()
                X_max = 0 if X.size == 0 else X.max()
                x_q_param = dnnlowp_utils.choose_quantization_params(X_min, X_max)
                inputs = ["W"]
                if do_dequantize:
                    inputs += ["b"]
                pack = core.CreateOperator(
                    "Int8ConvPackWeight",
                    inputs,
                    ["W_packed"],
                    stride=stride,
                    kernel=kernel,
                    dilation=dilation,
                    pad=pad,
                    nbits_in_non_outlier=nbits_in_non_outlier,
                    engine=engine,
                    group=group,
                    quantize_groupwise=1,
                    in_scale=x_q_param.scale,
                )
                init_net.Proto().op.extend([pack])

            conv = core.CreateOperator(
                op_type,
                [
                    "X_q" if do_quantize else "X",
                    "W_packed" if do_prepack_weight else "W",
                    "b",
                ],
                ["Y_q" if do_dequantize else "Y"],
                stride=stride,
                kernel=kernel,
                dilation=dilation,
                pad=pad,
                order=order,
                nbits_in_non_outlier=nbits_in_non_outlier,
                shared_buffer=(1 if share_col_buffer else 0),
                engine=engine,
                group=group,
                quantize_groupwise=1,
                device_option=gc,
            )
            if do_dequantize or do_prepack_weight:
                # groupwise quantization only works with static quantization
                # so we need to set quantization parameters
                dnnlowp_utils.add_quantization_param_args(conv, outputs[0][0])
            net.Proto().op.extend([conv])

            if do_dequantize:
                dequantize = core.CreateOperator(
                    "Dequantize", ["Y_q"], ["Y"], engine="DNNLOWP", device_option=gc
                )
                net.Proto().op.extend([dequantize])

            run_conv_or_fc(
                self, init_net, net, X, W, b, op_type, engine, order, gc, outputs
            )

        check_quantized_results_close(outputs)