File: conv_pool_dnnlowp_op_base.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (240 lines) | stat: -rw-r--r-- 8,443 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#pragma once

#ifdef _OPENMP
#include <omp.h>
#endif

#include "caffe2/core/tensor_int8.h"
#include "caffe2/operators/conv_op_shared.h"
#include "caffe2/operators/conv_pool_op_base.h"
#include "caffe2/quantization/server/fbgemm_pack_blob.h"
#include "caffe2/quantization/server/op_wrapper.h"

#ifdef _OPENMP
C10_DECLARE_int(caffe2_omp_num_threads);
#endif
C10_DECLARE_bool(caffe2_dnnlowp_shared_int32_buffer);
C10_DECLARE_bool(caffe2_force_shared_col_buffer);

namespace caffe2 {

// TODO: code duplication with dnnlowp_op.h
template <typename T, typename FP32_OP>
class ConvPoolDNNLowPOpBase : public ConvPoolOpBase<CPUContext> {
  static_assert(std::is_integral<T>::value, "Integral required.");

 public:
  USE_CONV_POOL_BASE_FUNCTIONS(CPUContext);
  ConvPoolDNNLowPOpBase(const OperatorDef& operator_def, Workspace* ws)
      : ConvPoolOpBase<CPUContext>(operator_def, ws),
        in_qparams_(InputSize()),
        qfactory_(dnnlowp::GetQuantizationFactoryOf(this)) {
#ifdef _OPENMP
    if (FLAGS_caffe2_omp_num_threads > 0) {
      omp_set_num_threads(FLAGS_caffe2_omp_num_threads);
    }
#endif

    if (this->debug_def().engine() == "DNNLOWP_16" ||
        this->debug_def().engine() == "DNNLOWP_ROWWISE_16") {
      LOG(WARNING)
          << this->debug_def().engine()
          << " is an experimental feature mostly for testing accuracy with "
             "fixed-point precision higher than 8 and performance is very slow";
    }
  }

  virtual ~ConvPoolDNNLowPOpBase() {
    if (measure_quantization_error_) {
      dnnlowp::ReportQuantizationError(this, quantization_error_stats_);
      LOG(WARNING) << this->debug_def().output(0) << " with type "
                   << this->debug_def().type() << " has output qparams : "
                   << "scale " << out_qparams_.scale << " offset "
                   << out_qparams_.zero_point << "; ";
    }
  }

 protected:
  const TensorCPU& InputTensorCPU_(int idx) {
    if (InputIsType<int8::Int8TensorCPU>(idx)) {
      return this->Input<int8::Int8TensorCPU>(idx).t;
    } else if (InputIsType<Int8ConvDNNLowPPackedWeightBlob>(idx)) {
      return this->Input<Int8ConvDNNLowPPackedWeightBlob>(idx).original_tensor;
    } else {
      return Input(idx);
    }
  }

  TensorCPU* OutputTensorCPU_(int idx) {
    return &Outputs()[idx]->template GetMutable<int8::Int8TensorCPU>()->t;
  }

  Tensor* OutputTensorCPU_(int idx, at::IntArrayRef dims, at::TensorOptions options) {
    auto* t = &Outputs()[idx]->template GetMutable<int8::Int8TensorCPU>()->t;
    ReinitializeTensor(t, dims, options.device(CPU));
    return t;
  }

  T* GetQuantizedOutputData_() {
    return OutputTensorCPU_(0)->template mutable_data<T>();
  }

  void MeasureQuantizationError_() {
    if (!measure_quantization_error_ || !Fp32Op_()) {
      return;
    }

    const float* actual = nullptr;
    vector<float> actual_temp;
    if (OutputTensorCPU_(0)->template IsType<float>()) {
      actual = OutputTensorCPU_(0)->template data<float>();
    } else {
      actual_temp.resize(OutputTensorCPU_(0)->numel());
      fbgemm::Dequantize<T>(
          OutputTensorCPU_(0)->template data<T>(),
          actual_temp.data(),
          OutputTensorCPU_(0)->numel(),
          out_qparams_);
      actual = actual_temp.data();
    }

    TensorCPU* float_tensor = Fp32Op_()->Get()->Output(0);
    float* ref = float_tensor->template mutable_data<float>();
    if (followed_by_ == "Relu" || debug_def().type() == "ConvRelu" ||
        debug_def().type() == "Int8ConvRelu") {
      for (int i = 0; i < OutputTensorCPU_(0)->numel(); ++i) {
        ref[i] = std::max(0.f, ref[i]);
      }
    }

    dnnlowp::MeasureQuantizationError(
        actual, ref, OutputTensorCPU_(0)->numel(), &quantization_error_stats_);
  }

  void RunOnDeviceEpilogue_() {
    dnnlowp::PropagateOutputTensorQuantizationParams(this, 0, out_qparams_);

    MeasureQuantizationError_();
  }

  void ParseDNNLowPOperatorArguments_() {
    if (!arguments_parsed_) {
      bool dequantize_output;
      dnnlowp::ParseDNNLowPOperatorArguments(
          this,
          &dequantize_output,
          &measure_quantization_error_,
          &followed_by_);
      CAFFE_ENFORCE_EQ(
          dequantize_output,
          false,
          "Conv DNNLOWP operators don't support dequantize_output");
      arguments_parsed_ = true;
    }
  }

  void GetOutputQuantizationParams_() {
    using namespace dnnlowp;

    ParseDNNLowPOperatorArguments_();

    if (HasStaticQuantization(this)) {
      out_qparams_ = GetStaticQuantizationParamsOf(this, 0);

      if (measure_quantization_error_) {
        // To measure quantization error, run ref fp32 impl.
        // This doesn't really belong here but we need to run the reference fp32
        // implementation before quantized computation of some inplace operators
        // will overwrite their inputs.
        Fp32Op_()->DequantizeInput();
        Fp32Op_()->Get()->RunOnDevice();
      }
    } else {
      // TODO: this is only needed when dequantize_output_ == false but leave
      // as it is now because some code relies on out_qparams_ initialized even
      // though it never actually uses it.
      Fp32Op_()->DequantizeInput();
      Fp32Op_()->Get()->RunOnDevice();
      out_qparams_ = Fp32Op_()->GetOutputQuantizationParams(qfactory_.get());
    }
  }

  OpWrapper<FP32_OP, T>* Fp32Op_() {
    if (!fp32_op_) {
      fp32_op_.reset(new OpWrapper<FP32_OP, T>(this, qfactory_.get()));
    }
    return fp32_op_.get();
  }

  void CreateSharedInt32Buffer_() {
    auto* mutexPtr =
        ws_->CreateBlob("__CAFFE2_DNNLOWP_SHARED_INT32_BUFFER_CPU_MUTEX__")
            ->GetMutable<std::unique_ptr<std::mutex>>();
    mutexPtr->reset(new std::mutex());
    ws_->CreateBlob("__CAFFE2_DNNLOWP_SHARED_INT32_BUFFER_CPU__");
  }

  void RunWithSharedBuffer_(
      Tensor* col_buffer,
      vector<int32_t>* Y_int32,
      std::function<
          void(Tensor* col_buffer_shared, vector<int32_t>* Y_int32_shared)> f) {
    auto f2 = [this, Y_int32, f](Tensor* col_buffer_shared) {
      if (FLAGS_caffe2_dnnlowp_shared_int32_buffer) {
        auto* mutexBlob =
            ws_->GetBlob("__CAFFE2_DNNLOWP_SHARED_INT32_BUFFER_CPU_MUTEX__");
        CAFFE_ENFORCE(mutexBlob, "Must call CreateSharedInt32Buffer() first");

        auto* mutexPtr = mutexBlob->GetMutable<std::unique_ptr<std::mutex>>();
        std::lock_guard<std::mutex> g(**mutexPtr);

        auto* Y_int32_shared =
            ws_->GetBlob("__CAFFE2_DNNLOWP_SHARED_INT32_BUFFER_CPU__")
                ->template GetMutable<vector<int32_t>>();
        f(col_buffer_shared, Y_int32_shared);
      } else {
        f(col_buffer_shared, Y_int32);
      }
    };

    if (FLAGS_caffe2_force_shared_col_buffer || this->shared_buffer_) {
      runWithSharedBuffer<CPUContext>(this->ws_, f2);
    } else {
      f2(col_buffer);
    }
  }

  bool measure_quantization_error_{false};
  std::string followed_by_;

  std::vector<dnnlowp::TensorQuantizationParams> in_qparams_;
  dnnlowp::TensorQuantizationParams out_qparams_;

  std::unique_ptr<OpWrapper<FP32_OP, T>> fp32_op_;
  std::unique_ptr<dnnlowp::QuantizationFactory> qfactory_;

  std::vector<T> out_temp_;
  // Buffer to store quantized output temporarily
  // when we output dequantized values.

  dnnlowp::QuantizationErrorStats quantization_error_stats_;

  bool arguments_parsed_{false};
};

#define USE_CONV_POOL_DNNLOWP_OPERATOR_BASE_FUNCTIONS(T, FP32_OP)          \
  /* using override */ using BaseType = ConvPoolDNNLowPOpBase<T, FP32_OP>; \
  /* using override */ using BaseType::GetOutputQuantizationParams_;       \
  /* using override */ using BaseType::GetQuantizedOutputData_;            \
  /* using override */ using BaseType::Fp32Op_;                            \
  /* using override */ using BaseType::InputTensorCPU_;                    \
  /* using override */ using BaseType::MeasureQuantizationError_;          \
  /* using override */ using BaseType::OutputTensorCPU_;                   \
  /* using override */ using BaseType::RunOnDeviceEpilogue_;               \
  /* using override */ using BaseType::followed_by_;                       \
  /* using override */ using BaseType::in_qparams_;                        \
  /* using override */ using BaseType::measure_quantization_error_;        \
  /* using override */ using BaseType::out_qparams_;                       \
  /* using override */ using BaseType::qfactory_;

} // namespace caffe2