1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
|
#include "conv_relu_op.h"
namespace caffe2 {
template <typename T, class Context>
bool ConvReluOp<T, Context>::RunOnDeviceWithOrderNCHW() {
// Delegate to local conv operator
for (int i = 0; i < this->InputSize(); ++i) {
local_input_blobs_[i]->ShareExternal(
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<void*>(this->Inputs()[i]->GetRaw()),
this->Inputs()[i]->meta());
}
if (!local_op_->RunOnDeviceWithOrderNCHW()) {
return false;
}
// Apply Relu
Tensor* local_output =
BlobGetMutableTensor(local_output_blobs_[0], Context::GetDeviceType());
const T* output_local_data = local_output->template data<T>();
Tensor* output =
Operator<Context>::Output(0, local_output->sizes(), at::dtype<T>());
T* output_data = output->template mutable_data<T>();
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < output->numel(); ++i) {
output_data[i] = std::max(static_cast<T>(0), output_local_data[i]);
}
return true;
}
template <typename T, class Context>
bool ConvReluOp<T, Context>::RunOnDeviceWithOrderNHWC() {
// Delegate to local conv operator
for (int i = 0; i < this->InputSize(); ++i) {
local_input_blobs_[i]->ShareExternal(
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<void*>(this->Inputs()[i]->GetRaw()),
this->Inputs()[i]->meta());
}
if (!local_op_->RunOnDeviceWithOrderNHWC()) {
return false;
}
// Apply Relu
Tensor* local_output =
BlobGetMutableTensor(local_output_blobs_[0], Context::GetDeviceType());
const T* output_local_data = local_output->template data<T>();
Tensor* output =
Operator<Context>::Output(0, local_output->sizes(), at::dtype<T>());
T* output_data = output->template mutable_data<T>();
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < output->numel(); ++i) {
output_data[i] = std::max(static_cast<T>(0), output_local_data[i]);
}
return true;
}
OPERATOR_SCHEMA(ConvRelu)
.NumInputs(2, 3)
.NumOutputs(1)
.TensorInferenceFunction(ConvPoolOpBase<CPUContext>::TensorInferenceForConv)
.CostInferenceFunction(OpSchema::CostInferenceFunctionType(
ConvPoolOpBase<CPUContext>::CostInferenceForConv));
REGISTER_CPU_OPERATOR(ConvRelu, ConvReluOp<float, CPUContext>);
} // namespace caffe2
|