1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
#include "dnnlowp.h"
#include "caffe2/core/logging.h"
#include "dnnlowp_op.h"
#include "kl_minimization.h"
#include "l2_minimization.h"
#include <cassert>
#include <cctype>
#ifdef _OPENMP
#include <omp.h>
#endif
C10_DEFINE_int32(
caffe2_dnnlowp_activation_quantization_precision,
8,
"Precision used for activation tensors");
C10_DEFINE_int32(
caffe2_dnnlowp_weight_quantization_precision,
8,
"Precision used for weight tensors");
C10_DEFINE_int32(
caffe2_dnnlowp_requantization_multiplier_precision,
32,
"Precision of integer multipliers used for rescaling quantized numbers");
C10_DEFINE_int32(
caffe2_dnnlowp_eltwise_quantization_precision,
16,
"Precision used for intermediate numbers during elementwise operations");
C10_DEFINE_bool(
caffe2_dnnlowp_force_scale_power_of_two,
false,
"When true, force quantization scales to a power of two");
C10_DEFINE_bool(
caffe2_dnnlowp_preserve_activation_sparsity,
false,
"When true, 0 is mapped to 0 after quantization: "
"i.e., symmetric quantization");
C10_DEFINE_bool(
caffe2_dnnlowp_preserve_weight_sparsity,
false,
"When true, 0 is mapped to 0 after quantization: "
"i.e., symmetric quantization");
C10_DEFINE_string(
caffe2_dnnlowp_activation_quantization_kind,
"min_max",
"Quantization method for activation tensors. "
"Allowed values: min_max, l2, l2_approx, kl, l1, p99");
C10_DEFINE_string(
caffe2_dnnlowp_weight_quantization_kind,
"min_max",
"Quantization method for weight tensors. "
"Allowed values: min_max, l2, l2_approx, kl, l1, p99");
C10_DEFINE_double(
caffe2_dnnlowp_weight_p99_threshold,
0.99,
"P99 threshold to select out from the full histogram for weights.");
C10_DEFINE_double(
caffe2_dnnlowp_activation_p99_threshold,
0.99,
"P99 threshold to select out from the full histogram for activations.");
C10_DEFINE_int32(
caffe2_dnnlowp_nbits_in_non_outlier,
8,
"When outlier-aware quantization is used, if a quantized number can be "
"represented by this number of bits, it is considered not an outlier so "
"handled with 16-bit accumulation");
C10_DEFINE_int32(
caffe2_dnnlowp_copy_to_32bit_frequency,
32,
"When outlier-aware quantization is used, this option specifies how often "
"we spill 16-bit accumulated numbers to 32-bit during the first pass");
C10_DEFINE_bool(
caffe2_dnnlowp_force_slow_path,
false,
"When true, use slow path in quantization");
namespace dnnlowp {
using namespace std;
QuantizationFactory::QuantizationKind StringToKind(const string& s) {
string s_lower(s);
transform(s_lower.begin(), s_lower.end(), s_lower.begin(), ::tolower);
if (s_lower == "min_max" || s == "MIN_MAX_QUANTIZATION") {
return QuantizationFactory::MIN_MAX_QUANTIZATION;
} else if (s_lower == "l1" || s == "L1_MIN_QUANTIZATION") {
return QuantizationFactory::L1_MIN_QUANTIZATION;
} else if (s_lower == "l2" || s == "L2_MIN_QUANTIZATION") {
return QuantizationFactory::L2_MIN_QUANTIZATION;
} else if (s_lower == "l2_approx" || s == "L2_MIN_QUANTIZATION_APPROX") {
if (FLAGS_caffe2_dnnlowp_preserve_weight_sparsity ||
FLAGS_caffe2_dnnlowp_preserve_activation_sparsity) {
return QuantizationFactory::L2_MIN_QUANTIZATION;
} else {
return QuantizationFactory::L2_MIN_QUANTIZATION_APPROX;
}
} else if (s_lower == "kl" || s == "KL_MIN_QUANTIZATION") {
return QuantizationFactory::KL_MIN_QUANTIZATION;
} else if (s_lower == "p99" || s == "P99_QUANTIZATION") {
return QuantizationFactory::P99_QUANTIZATION;
} else {
assert(false);
return QuantizationFactory::MIN_MAX_QUANTIZATION;
}
}
QuantizationFactory* QuantizationFactory::GetDefaultInstance() {
static QuantizationFactory singleton(
FLAGS_caffe2_dnnlowp_activation_quantization_precision,
FLAGS_caffe2_dnnlowp_weight_quantization_precision,
FLAGS_caffe2_dnnlowp_requantization_multiplier_precision,
FLAGS_caffe2_dnnlowp_eltwise_quantization_precision,
FLAGS_caffe2_dnnlowp_preserve_activation_sparsity,
FLAGS_caffe2_dnnlowp_preserve_weight_sparsity,
FLAGS_caffe2_dnnlowp_force_scale_power_of_two,
StringToKind(FLAGS_caffe2_dnnlowp_activation_quantization_kind),
StringToKind(FLAGS_caffe2_dnnlowp_weight_quantization_kind),
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
FLAGS_caffe2_dnnlowp_weight_p99_threshold,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
FLAGS_caffe2_dnnlowp_activation_p99_threshold);
static bool log_printed = false;
if (!log_printed) {
LOG(INFO) << "activation_precision "
<< FLAGS_caffe2_dnnlowp_activation_quantization_precision;
LOG(INFO) << "weight_precision "
<< FLAGS_caffe2_dnnlowp_weight_quantization_precision;
LOG(INFO) << "requantization_multiplier_precision "
<< FLAGS_caffe2_dnnlowp_requantization_multiplier_precision;
LOG(INFO) << "eltwise_quantize_precision "
<< FLAGS_caffe2_dnnlowp_eltwise_quantization_precision;
LOG(INFO) << "preserve_activation_sparsity "
<< FLAGS_caffe2_dnnlowp_preserve_activation_sparsity;
LOG(INFO) << "preserve_weight_sparsity "
<< FLAGS_caffe2_dnnlowp_preserve_weight_sparsity;
LOG(INFO) << "force_scale_power_of_two "
<< FLAGS_caffe2_dnnlowp_force_scale_power_of_two;
LOG(INFO) << "activation_quantization_kind "
<< FLAGS_caffe2_dnnlowp_activation_quantization_kind;
LOG(INFO) << "weight_quantization_kind "
<< FLAGS_caffe2_dnnlowp_weight_quantization_kind;
LOG(INFO) << "weight p99 threshold "
<< FLAGS_caffe2_dnnlowp_weight_p99_threshold;
LOG(INFO) << "activation p99 threshold "
<< FLAGS_caffe2_dnnlowp_activation_p99_threshold;
LOG(INFO) << "nbits_in_non_outlier "
<< FLAGS_caffe2_dnnlowp_nbits_in_non_outlier;
LOG(INFO) << "copy_to_32bit_frequency "
<< FLAGS_caffe2_dnnlowp_copy_to_32bit_frequency;
LOG(INFO) << "omp_get_max_threads() " << caffe2::dnnlowp_get_max_threads();
log_printed = true;
}
return &singleton;
}
QuantizationFactory::QuantizationFactory(
int activation_precision,
int weight_precision,
int requantization_multiplier_precision,
int eltwise_quantize_precision,
bool preserve_activation_sparsity,
bool preserve_weight_sparsity,
bool force_scale_power_of_two,
QuantizationKind activation_kind,
QuantizationKind weight_kind,
float weight_p99_threshold,
float activation_p99_threshold)
: activation_precision_(activation_precision),
weight_precision_(weight_precision),
requantization_multiplier_precision_(requantization_multiplier_precision),
eltwise_quantize_precision_(eltwise_quantize_precision),
preserve_activation_sparsity_(preserve_activation_sparsity),
preserve_weight_sparsity_(preserve_weight_sparsity),
force_scale_power_of_two_(force_scale_power_of_two),
activation_kind_(activation_kind),
weight_kind_(weight_kind),
weight_p99_threshold_(weight_p99_threshold),
activation_p99_threshold_(activation_p99_threshold) {}
TensorQuantizationParams QuantizationFactory::ChooseQuantizationParams(
const Histogram& hist,
QuantizationKind kind,
int precision,
bool preserve_sparsity,
bool is_weight) const {
switch (kind) {
case L2_MIN_QUANTIZATION:
return L2ErrorMinimization().ChooseQuantizationParams(
hist, preserve_sparsity, precision);
case L2_MIN_QUANTIZATION_APPROX:
return L2ErrorMinimization().NonlinearQuantizationParamsSearch(
hist, preserve_sparsity, precision);
case L1_MIN_QUANTIZATION:
return L1ErrorMinimization().ChooseQuantizationParams(
hist, preserve_sparsity, precision);
case KL_MIN_QUANTIZATION:
return KLDivergenceMinimization().ChooseQuantizationParams(
hist, preserve_sparsity, precision);
case P99_QUANTIZATION:
return P99(is_weight ? weight_p99_threshold_ : activation_p99_threshold_)
.ChooseQuantizationParams(hist, preserve_sparsity, precision);
case MIN_MAX_QUANTIZATION:
default:
return ChooseQuantizationParams(
hist.Min(), hist.Max(), precision, preserve_sparsity);
}
}
TensorQuantizationParams QuantizationFactory::ChooseQuantizationParams(
const Histogram& hist,
bool is_weight) const {
if (is_weight) {
return ChooseQuantizationParams(
hist,
GetWeightKind(),
GetWeightPrecision(),
GetPreserveWeightSparsity(),
true);
} else {
return ChooseQuantizationParams(
hist,
GetActivationKind(),
GetActivationPrecision(),
GetPreserveActivationSparsity(),
false);
}
}
TensorQuantizationParams QuantizationFactory::ChooseQuantizationParams(
const float* values,
int len,
QuantizationKind kind,
int precision,
bool preserve_sparsity) const {
float min = 0, max = 0;
fbgemm::FindMinMax(values, &min, &max, len);
if (MIN_MAX_QUANTIZATION == kind) {
return ChooseQuantizationParams(min, max, precision, preserve_sparsity);
} else {
if (0 == len) {
return ChooseQuantizationParams(min, max, precision, preserve_sparsity);
}
/** Adjust the granularity of histogram collection to
* the quantization precision. Use 8x more number of bins
* in the histogram should be sufficient for linear quantization.
*/
Histogram hist(1 << (precision + 3), min, max);
for (int i = 0; i < len; ++i) {
hist.Add(values[i]);
}
return ChooseQuantizationParams(hist, kind, precision, preserve_sparsity);
}
}
TensorQuantizationParams QuantizationFactory::ChooseQuantizationParams(
const float* values,
int len,
bool is_weight) const {
if (is_weight) {
return ChooseQuantizationParams(
values,
len,
GetWeightKind(),
GetWeightPrecision(),
GetPreserveWeightSparsity());
} else {
return ChooseQuantizationParams(
values,
len,
GetActivationKind(),
GetActivationPrecision(),
GetPreserveActivationSparsity());
}
}
RequantizationParams QuantizationFactory::ChooseRequantizationMultiplier(
float real_multiplier,
TensorQuantizationParams target_qparams) const {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
RequantizationParams params;
params.target_qparams = target_qparams;
params.real_multiplier = real_multiplier;
fbgemm::ChooseRequantizationMultiplier(
real_multiplier,
¶ms.multiplier,
¶ms.right_shift,
requantization_multiplier_precision_);
return params;
}
vector<float>
adjust_hist_to_include_zero(const Histogram& hist, float* min, float* max) {
const vector<uint64_t> bins = *hist.GetHistogram();
*min = hist.Min();
*max = hist.Max();
int nbins = bins.size();
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
float bin_width = (*max - *min) / nbins;
// Pad histogram to include zero
int additional_nbins = 0;
int offset = 0;
if (bin_width > 0) {
if (*min > 0) {
// additional nbins to include 0
additional_nbins = ceil(*min / bin_width);
offset = additional_nbins;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
*min -= additional_nbins * bin_width;
assert(*min <= 0);
} else if (*max < 0) {
additional_nbins = ceil((-*max) / bin_width);
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
*max += additional_nbins * bin_width;
assert(*max >= 0);
}
}
vector<float> bins_f(nbins + additional_nbins);
for (int i = 0; i < nbins; ++i) {
bins_f[i + offset] = bins[i];
}
return bins_f;
}
} // namespace dnnlowp
|