1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
#pragma once
#ifdef _OPENMP
#include <omp.h>
#endif
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor_int8.h"
#include "caffe2/quantization/server/caffe2_dnnlowp_utils.h"
#include "caffe2/quantization/server/dnnlowp.h"
#include "caffe2/quantization/server/fbgemm_pack_blob.h"
#include "caffe2/quantization/server/op_wrapper.h"
#include "caffe2/quantization/server/sigmoid.h"
#include "caffe2/quantization/server/tanh.h"
#ifdef _OPENMP
C10_DECLARE_int(caffe2_omp_num_threads);
#endif
namespace caffe2 {
/**
* @brief A convenient base class for C2 operators with DNNLOWP engine.
* DNNLOWP ops give flexibility on the type of input/output blobs.
* For example, some inputs can be the usual fp32 tensor and they will be
* quantized before doing actual computation.
* Otherwise, the inputs should be pre-quantized Int8TensorCPU.
* A few constraints: when the weight is pre-quantized if and only if the
* bias is also pre-quantized.
*
* static quantization vs. dynamic quantization
* When Y_scale and Y_zero_point (optional with default = 0) arg is set,
* and dequantize_output is false, we do static quantization, meaning
* we're using the same pre-computed scale and zero_point for the output
* activation tensor.
* Otherwise, we do dynamic quantization by looking at the min/max of
* output activation tensor for each batch.
* Y_scale and Y_zero_point arguments are used for static quantization.
* scale and zero_point of Int8TensorCPU is used for carrying
* quantization information across operators both in static and dynamic
* quantization. This means scale and zero_point of Int8TensorCPU is
* valid only for the current batch and will be reset in the next batch
* when dynamic quantization is used.
*
* C2 operators with DNNLOWP engine have the following arguments:
* - dequantize_output (default=false): when true, output is dequantized
* as fp32. Useful when we're only quantizing individual operators
* rather than doing end-to-end quantization. Conv operators don't
support dequantize_output option as an exception because doing so
complicate the implementation significantly and having a separate
Dequantize operator doesn't add much overhead because Conv ops are
usually used in deep networks where regions of quantization are
long chains.
* - followed_by (default=null): can be relu, sigmoid, or tanh. When
* specified, the current operator is only followed by relu, sigmoid,
* or tanh, and this fact can be used for more accurate output
* quantization.
* - measure_quantization_error (default=false): when true, L2 error
* with respect to the baseline C2 operator in fp32 is reported.
* WARNING: turning this option will make performance very slow and
* this option is intended for debugging accuracy issues.
*
* For the following quantization method related options, please refer
* to caffe2/quantization/server/dnnlowp.cc for more details.
*
* - activation_quantization_precision (default=8)
* - weight_quantization_precision (default=8)
* - requantization_multiplier_precision (default=32)
* - eltwise_quantization_precision (default=16)
* - force_scale_power_of_two (default=0)
* - preserve_activation_sparsity (default=0)
* - preserve_weight_sparsity (default=0)
* - activation_quantization_kind (default=min_max)
* - weight_quantization_kind (default=min_max)
*/
template <typename T, typename FP32_OP>
class DNNLowPOp : public Operator<CPUContext> {
static_assert(std::is_integral<T>::value, "Integral required.");
public:
USE_OPERATOR_FUNCTIONS(CPUContext);
DNNLowPOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<CPUContext>(operator_def, ws),
in_qparams_(InputSize()),
qfactory_(dnnlowp::GetQuantizationFactoryOf(this)) {
#ifdef _OPENMP
if (FLAGS_caffe2_omp_num_threads > 0) {
omp_set_num_threads(FLAGS_caffe2_omp_num_threads);
}
#endif
if (this->debug_def().engine() == "DNNLOWP_16" ||
this->debug_def().engine() == "DNNLOWP_ROWWISE_16") {
LOG(WARNING)
<< this->debug_def().engine()
<< " is an experimental feature mostly for testing accuracy with "
"fixed-point precision higher than 8 and performance is very slow";
}
}
virtual ~DNNLowPOp() {
if (measure_quantization_error_) {
dnnlowp::ReportQuantizationError(this, quantization_error_stats_);
}
}
protected:
const TensorCPU& InputTensorCPU_(int idx) {
if (InputIsType<int8::Int8TensorCPU>(idx)) {
return this->Input<int8::Int8TensorCPU>(idx).t;
} else if (InputIsType<Int8FCDNNLowPPackedWeightBlob>(idx)) {
return this->Input<Int8FCDNNLowPPackedWeightBlob>(idx).original_tensor;
} else {
return Input(idx);
}
}
TensorCPU* OutputTensorCPU_(int idx) {
if (dequantize_output_) {
return Output(idx);
} else {
return &Outputs()[idx]->template GetMutable<int8::Int8TensorCPU>()->t;
}
}
Tensor*
OutputTensorCPU_(int idx, at::IntArrayRef dims, at::TensorOptions options) {
if (dequantize_output_) {
return Output(idx, dims, options.device(CPU));
} else {
auto* t = &Outputs()[idx]->template GetMutable<int8::Int8TensorCPU>()->t;
ReinitializeTensor(t, dims, options.device(CPU));
return t;
}
}
T* GetQuantizedOutputData_() {
if (dequantize_output_) {
out_temp_.resize(Output(0)->numel());
return out_temp_.data();
} else {
return OutputTensorCPU_(0)->template mutable_data<T>();
}
}
void MeasureQuantizationError_() {
if (!measure_quantization_error_ || !Fp32Op_()) {
return;
}
const float* actual = nullptr;
std::vector<float> actual_temp;
if (OutputTensorCPU_(0)->template IsType<float>()) {
actual = OutputTensorCPU_(0)->template data<float>();
std::string op_type = this->debug_def().type();
bool relu_fused = op_type.length() >= 4 &&
op_type.compare(op_type.length() - 4, 4, "Relu") == 0;
if (GetSingleArgument<std::string>("followed_by", "") == "Relu" &&
!relu_fused) {
// If dequantize_output_ is true and relu is not fused,
// dnnlowp op won't clip negative values. Do it here.
actual_temp.resize(OutputTensorCPU_(0)->numel());
for (int i = 0; i < Output(0)->numel(); ++i) {
actual_temp[i] = std::max(0.f, actual[i]);
}
actual = actual_temp.data();
}
} else {
actual_temp.resize(OutputTensorCPU_(0)->numel());
fbgemm::Dequantize<T>(
OutputTensorCPU_(0)->template data<T>(),
actual_temp.data(),
OutputTensorCPU_(0)->numel(),
out_qparams_);
actual = actual_temp.data();
}
float* ref = Fp32Op_()->Get()->Output(0)->template mutable_data<float>();
if (followed_by_ == "Relu") {
for (int i = 0; i < OutputTensorCPU_(0)->numel(); ++i) {
ref[i] = std::max(0.f, ref[i]);
}
}
dnnlowp::MeasureQuantizationError(
actual, ref, OutputTensorCPU_(0)->numel(), &quantization_error_stats_);
}
void RunOnDeviceEpilogue_() {
if (dequantize_output_) {
fbgemm::Dequantize<T>(
out_temp_.data(),
OutputTensorCPU_(0)->template mutable_data<float>(),
OutputTensorCPU_(0)->numel(),
out_qparams_);
} else {
dnnlowp::PropagateOutputTensorQuantizationParams(this, 0, out_qparams_);
}
MeasureQuantizationError_();
}
void ParseDNNLowPOperatorArguments_() {
// Ideally, this should be done in constructor but any modification of
// arguments in ParseDNNLowPOperatorArguments will be ignored if we call
// this from constructor.
// Make sure all derived classes call this "early enough" so that they
// use correct parameters.
if (!arguments_parsed_) {
dnnlowp::ParseDNNLowPOperatorArguments(
this,
&dequantize_output_,
&measure_quantization_error_,
&followed_by_);
arguments_parsed_ = true;
}
}
void GetOutputQuantizationParams_(
dnnlowp::TensorQuantizationParams* out_qparams_overwrite = nullptr) {
using namespace dnnlowp;
ParseDNNLowPOperatorArguments_();
if (HasStaticQuantization(this)) {
if (out_qparams_overwrite != nullptr) {
out_qparams_ = *out_qparams_overwrite;
} else {
out_qparams_ = GetStaticQuantizationParamsOf(this, 0);
}
if (measure_quantization_error_) {
// To measure quantization error, run ref fp32 impl.
// This doesn't really belong here but we need to run the reference fp32
// implementation before quantized computation of some inplace operators
// will overwrite their inputs.
Fp32Op_()->DequantizeInput();
Fp32Op_()->Get()->RunOnDevice();
}
} else {
// TODO: this is only needed when dequantize_output_ == false but leave
// as it is now because some code relies on out_qparams_ initialized even
// though it never actually uses it.
Fp32Op_()->DequantizeInput();
Fp32Op_()->Get()->RunOnDevice();
if (out_qparams_overwrite != nullptr) {
out_qparams_ = *out_qparams_overwrite;
} else {
out_qparams_ = Fp32Op_()->GetOutputQuantizationParams(qfactory_.get());
}
}
}
OpWrapper<FP32_OP, T>* Fp32Op_() {
if (!fp32_op_) {
fp32_op_.reset(new OpWrapper<FP32_OP, T>(this, qfactory_.get()));
}
return fp32_op_.get();
}
bool dequantize_output_{false}, measure_quantization_error_{false};
std::string followed_by_;
std::vector<dnnlowp::TensorQuantizationParams> in_qparams_;
dnnlowp::TensorQuantizationParams out_qparams_;
std::unique_ptr<OpWrapper<FP32_OP, T>> fp32_op_;
std::unique_ptr<dnnlowp::QuantizationFactory> qfactory_;
std::vector<T> out_temp_;
// Buffer to store quantized output temporarily
// when we output dequantized values.
dnnlowp::QuantizationErrorStats quantization_error_stats_;
bool arguments_parsed_{false};
};
#define USE_DNNLOWP_OPERATOR_BASE_FUNCTIONS(T, FP32_OP) \
/* using override */ using BaseType = DNNLowPOp<T, FP32_OP>; \
/* using override */ using BaseType::GetOutputQuantizationParams_; \
/* using override */ using BaseType::GetQuantizedOutputData_; \
/* using override */ using BaseType::Fp32Op_; \
/* using override */ using BaseType::InputTensorCPU_; \
/* using override */ using BaseType::MeasureQuantizationError_; \
/* using override */ using BaseType::OutputTensorCPU_; \
/* using override */ using BaseType::RunOnDeviceEpilogue_; \
/* using override */ using BaseType::dequantize_output_; \
/* using override */ using BaseType::followed_by_; \
/* using override */ using BaseType::in_qparams_; \
/* using override */ using BaseType::measure_quantization_error_; \
/* using override */ using BaseType::out_qparams_; \
/* using override */ using BaseType::qfactory_;
inline int dnnlowp_get_num_threads() {
#ifdef _OPENMP
return omp_get_num_threads();
#else
return 1;
#endif
}
inline int dnnlowp_get_max_threads() {
#ifdef _OPENMP
return omp_get_max_threads();
#else
return 1;
#endif
}
inline int dnnlowp_get_thread_num() {
#ifdef _OPENMP
return omp_get_thread_num();
#else
return 0;
#endif
}
} // namespace caffe2
|