File: elementwise_linear_dnnlowp_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (132 lines) | stat: -rw-r--r-- 3,738 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/**
 * Copyright (c) 2016-present, Facebook, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "elementwise_linear_dnnlowp_op.h"

namespace caffe2 {

using namespace dnnlowp;

// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
template <typename T>
ElementwiseLinearDNNLowPOp<T>::ElementwiseLinearDNNLowPOp(
    const OperatorDef& operator_def,
    Workspace* ws)
    : BaseType(operator_def, ws),
      axis_(this->template GetSingleArgument<int>("axis", 1)) {}

template <typename T>
bool ElementwiseLinearDNNLowPOp<T>::RunOnDevice() {
  if (!GetQuantizationParameters_()) {
    return false;
  }

  const auto& X = InputTensorCPU_(0);
  const auto& a = InputTensorCPU_(1);
  const auto& b = InputTensorCPU_(2);
  auto* Y = OutputTensorCPU_(0);

  const auto canonical_axis = X.canonical_axis_index(axis_);
  const int N = X.size_to_dim(canonical_axis);
  const int D = X.size_from_dim(canonical_axis);

  CAFFE_ENFORCE_EQ(a.ndim(), 1, a.ndim());
  CAFFE_ENFORCE_EQ(a.size(0), D, a.ndim());
  CAFFE_ENFORCE_EQ(b.ndim(), 1, b.ndim());
  CAFFE_ENFORCE_EQ(b.size(0), D, b.ndim());

  Y->ResizeLike(X);

  // Quantize X
  vector<T> X_temp;
  const T* X_quantized =
      QuantizeInputIfNeeded<T>(this, 0, in_qparams_[0], X_temp);

  // Quantize b
  vector<int32_t> b_quantized(b.numel());
  const float* b_data = b.template data<float>();
#ifdef _OPENMP
#pragma omp parallel for
#endif
  for (int i = 0; i < b.numel(); ++i) {
    b_quantized[i] = fbgemm::Quantize<int32_t>(
        b_data[i],
        0,
        in_qparams_[0].scale * in_qparams_[1].scale,
        32,
        true /* signed */);
  }

  T* Y_quantized = GetQuantizedOutputData_();
#ifdef _OPENMP
#pragma omp parallel for
#endif
  for (int n = 0; n < N; ++n) {
    for (int d = 0; d < D; ++d) {
      int32_t raw = (X_quantized[n * D + d] - in_qparams_[0].zero_point) *
              (a_quantized_[d] - in_qparams_[1].zero_point) +
          b_quantized[d];
      Y_quantized[n * D + d] =
          fbgemm::Requantize<T>(raw, requantization_params_);
    }
  }

  RunOnDeviceEpilogue_();

  return true;
}

template <typename T>
bool ElementwiseLinearDNNLowPOp<T>::GetQuantizationParameters_() {
  using namespace dnnlowp;

  // Choose quantization for X
  in_qparams_[0] = GetInputTensorQuantizationParamsOf(this, 0, qfactory_.get());

  // Quantize a
  if (a_quantized_.empty()) {
    const auto& a = InputTensorCPU_(1);
    in_qparams_[1] = qfactory_->ChooseQuantizationParams(
        a.template data<float>(), a.numel(), true /*weight*/);

    a_quantized_.resize(a.numel());
    fbgemm::Quantize<T>(
        a.template data<float>(),
        a_quantized_.data(),
        a_quantized_.size(),
        in_qparams_[1]);
  }

  GetOutputQuantizationParams_();

  float real_multiplier =
      in_qparams_[0].scale * in_qparams_[1].scale / out_qparams_.scale;
  requantization_params_ =
      qfactory_->ChooseRequantizationMultiplier(real_multiplier, out_qparams_);

  return true;
}

REGISTER_CPU_OPERATOR_WITH_ENGINE(
    ElementwiseLinear,
    DNNLOWP,
    ElementwiseLinearDNNLowPOp<uint8_t>);
REGISTER_CPU_OPERATOR_WITH_ENGINE(
    Int8ElementwiseLinear,
    DNNLOWP,
    ElementwiseLinearDNNLowPOp<uint8_t>);

} // namespace caffe2