1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
import collections
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, workspace
from caffe2.quantization.server.dnnlowp_test_utils import check_quantized_results_close
from hypothesis import given, settings
dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])
class DNNLowPMulOpTest(hu.HypothesisTestCase):
@given(
N=st.integers(32, 256),
is_empty=st.booleans(),
in_quantized=st.booleans(),
out_quantized=st.booleans(),
in_place=st.sampled_from([(False, False), (True, False), (False, True)]),
**hu.gcs_cpu_only
)
@settings(deadline=None)
def test_dnnlowp_elementwise_mul_int(
self, N, is_empty, in_quantized, out_quantized, in_place, gc, dc
):
if is_empty:
N = 0
# FIXME: DNNLOWP Mul doesn't support inplace operation and
# dequantize_output=1 at the same time
if in_place[0] or in_place[1]:
in_quantized = True
out_quantized = True
# All inputs have scale 1, so exactly represented after quantization
min_ = -100
max_ = min_ + 255
A = np.round(np.random.rand(N) * (max_ - min_) + min_)
A = A.astype(np.float32)
if N != 0:
A[0] = min_
A[1] = max_
B = np.round(np.random.rand(N) * 255 - 128).astype(np.float32)
if N != 0:
B[0] = -128
B[1] = 127
Output = collections.namedtuple("Output", ["Y", "engine"])
outputs = []
engine_list = ["", "DNNLOWP"]
for engine in engine_list:
net = core.Net("test_net")
do_quantize = "DNNLOWP" in engine and in_quantized
do_dequantize = "DNNLOWP" in engine and out_quantized
if do_quantize:
quantize_A = core.CreateOperator(
"Quantize", ["A"], ["A_q"], engine=engine, device_option=gc
)
net.Proto().op.extend([quantize_A])
quantize_B = core.CreateOperator(
"Quantize", ["B"], ["B_q"], engine=engine, device_option=gc
)
net.Proto().op.extend([quantize_B])
out = "Y"
if in_place[0]:
out = "A"
elif in_place[1]:
out = "B"
mul = core.CreateOperator(
"Mul",
["A_q", "B_q"] if do_quantize else ["A", "B"],
[(out + "_q") if do_dequantize else out],
dequantize_output=not do_dequantize,
engine=engine,
device_option=gc,
)
net.Proto().op.extend([mul])
if do_dequantize:
dequantize = core.CreateOperator(
"Dequantize", [out + "_q"], [out], engine=engine, device_option=gc
)
net.Proto().op.extend([dequantize])
self.ws.create_blob("A").feed(A, device_option=gc)
self.ws.create_blob("B").feed(B, device_option=gc)
self.ws.run(net)
outputs.append(Output(Y=self.ws.blobs[out].fetch(), engine=engine))
check_quantized_results_close(outputs)
@given(**hu.gcs_cpu_only)
@settings(deadline=None)
def test_dnnlowp_elementwise_mul_broadcast(self, gc, dc):
# Set broadcast and no axis, i.e. broadcasting last dimensions.
min_ = -100
max_ = min_ + 255
A = np.round(np.random.rand(2, 3, 4, 5) * (max_ - min_) + min_)
A = A.astype(np.float32)
A[0, 0, 0, 0] = min_
A[0, 0, 0, 1] = max_
B = np.round(np.random.rand(4, 5) * 255 - 128).astype(np.float32)
B[0, 0] = -128
B[0, 1] = 127
Output = collections.namedtuple("Output", ["Y", "engine"])
outputs = []
engine_list = ["", "DNNLOWP"]
for engine in engine_list:
net = core.Net("test_net")
mul = core.CreateOperator(
"Mul",
["A", "B"],
["Y"],
engine=engine,
device_option=gc,
broadcast=1,
dequantize_output=1,
)
net.Proto().op.extend([mul])
self.ws.create_blob("A").feed(A, device_option=gc)
self.ws.create_blob("B").feed(B, device_option=gc)
self.ws.run(net)
outputs.append(Output(Y=self.ws.blobs["Y"].fetch(), engine=engine))
check_quantized_results_close(outputs)
@given(**hu.gcs_cpu_only)
@settings(deadline=None)
def test_dnnlowp_elementwise_mul_broadcast_axis(self, gc, dc):
for bdim, axis in [
((3, 4), 1), # broadcasting intermediate dimensions
((2,), 0), # broadcasting the first dimension
((1, 4, 1), 1),
]:
# broadcasting with single elem dimensions at both ends
min_ = -100
max_ = min_ + 255
A = np.round(np.random.rand(2, 3, 4, 5) * (max_ - min_) + min_)
A = A.astype(np.float32)
B = np.round(np.random.rand(*bdim) * 255 - 128).astype(np.float32)
A.flat[0] = min_
A.flat[1] = max_
B.flat[0] = -128
B.flat[1] = 127
Output = collections.namedtuple("Output", ["Y", "engine"])
outputs = []
engine_list = ["", "DNNLOWP"]
for engine in engine_list:
net = core.Net("test_net")
mul = core.CreateOperator(
"Mul",
["A", "B"],
["Y"],
engine=engine,
device_option=gc,
broadcast=1,
axis=axis,
dequantize_output=1,
)
net.Proto().op.extend([mul])
self.ws.create_blob("A").feed(A, device_option=gc)
self.ws.create_blob("B").feed(B, device_option=gc)
self.ws.run(net)
outputs.append(Output(Y=self.ws.blobs["Y"].fetch(), engine=engine))
check_quantized_results_close(outputs)
|