File: elementwise_sum_dnnlowp_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (263 lines) | stat: -rw-r--r-- 8,161 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#include "utility_dnnlowp_ops.h"

#include <array>
#include <tuple>
#include <type_traits>
#include <vector>

// #define DNNLOWP_MEASURE_TIME_BREAKDOWN
#ifdef DNNLOWP_MEASURE_TIME_BREAKDOWN
#include <chrono>
#endif

#include "dnnlowp_partition.h"

namespace caffe2 {

using namespace std;

// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
template <typename T, bool ReluFused>
SumDNNLowPOp<T, ReluFused>::SumDNNLowPOp(
    const OperatorDef& operator_def,
    Workspace* ws)
    : BaseType(operator_def, ws) {}

template <typename T, bool ReluFused>
bool SumDNNLowPOp<T, ReluFused>::RunOnDevice() {
  if (!this->arguments_parsed_) {
    dnnlowp::ParseDNNLowPOperatorArguments(
        this, &dequantize_output_, &measure_quantization_error_, &followed_by_);

    if (ReluFused) {
      // It's actually fused with Relu not followed by but setting this to make
      // sure quantization error is correctly measured in
      // this->MeasureQuantizationError_
      followed_by_ = "Relu";
      dnnlowp::AdjustOutputTensorQuantizationParamsWithFollowedBy(
          this, followed_by_);
    }
    this->arguments_parsed_ = true;
  }

#ifdef DNNLOWP_MEASURE_TIME_BREAKDOWN
  chrono::time_point<chrono::system_clock> t_begin, t_end;

  t_begin = chrono::system_clock::now();
#endif

  if (!GetQuantizationParameters_()) {
    return false;
  }

#ifdef DNNLOWP_MEASURE_TIME_BREAKDOWN
  t_end = chrono::system_clock::now();
  double dt = chrono::duration<double>(t_end - t_begin).count();
  LOG(INFO) << "this=" << this << " get_quant_params: " << dt * 1e3 << " ms";

  t_begin = chrono::system_clock::now();
#endif

  using namespace dnnlowp;
  // Quantize inputs
  int len = InputTensorCPU_(0).size();

  // Element-wise sum
  int32_t intermediate_zero_point =
      intermediate_qparams_.zero_point * InputSize();

  auto* output = OutputTensorCPU_(0);
  output->ResizeLike(InputTensorCPU_(0));

  T* output_data = GetQuantizedOutputData_();

  if (InputTensorCPU_(0).template IsType<T>()) {
    if (InputSize() == 2 && is_same<T, uint8_t>::value && GetCpuId().avx2() &&
        GetCpuId().fma()) {
      // fast path when we have 2 uint8_t inputs with AVX2 / FMA support
      // NOTE: this path does addition in floating point unlike slow path that
      // does everything in fixed-point. So they are numerically different.
      // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
      array<const T*, 2> input_data;
      for (int i = 0; i < 2; ++i) {
        input_data[i] = InputTensorCPU_(i).template data<T>();
      }

#ifdef _OPENMP
#pragma omp parallel
#endif
      {
        constexpr int VLEN = 8;
        // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
        int j_begin, j_end;
        tie(j_begin, j_end) = Get1DPartition(
            len, dnnlowp_get_num_threads(), dnnlowp_get_thread_num(), VLEN);

        internal::ElementWiseSumAVX2<T, ReluFused>(
            input_data[0] + j_begin,
            input_data[1] + j_begin,
            output_data + j_begin,
            j_end - j_begin,
            in_qparams_[0].scale,
            in_qparams_[0].zero_point,
            in_qparams_[1].scale,
            in_qparams_[1].zero_point,
            out_qparams_.scale,
            out_qparams_.zero_point);
      } // omp parallel
    } else {
      vector<RequantizationParams> in_requantization_params(InputSize());
      vector<T*> input_data(InputSize());
      for (int i = 0; i < InputSize(); ++i) {
        float real_multiplier =
            in_qparams_[i].scale / intermediate_qparams_.scale;
        in_requantization_params[i] = qfactory_->ChooseRequantizationMultiplier(
            real_multiplier, intermediate_qparams_);
        input_data[i] = InputTensorCPU_(i).template data<T>();
      }

#ifdef _OPENMP
#pragma omp parallel
#endif
      {
        // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
        int j_begin, j_end;
        tie(j_begin, j_end) = Get1DPartition(
            len, dnnlowp_get_num_threads(), dnnlowp_get_thread_num());

        for (int j = j_begin; j < j_end; ++j) {
          int32_t acc = 0;
          for (int i = 0; i < InputSize(); ++i) {
            acc += fbgemm::Requantize<int32_t>(
                input_data[i][j] - in_qparams_[i].zero_point,
                in_requantization_params[i]);
          }
          int32_t raw = acc - intermediate_zero_point;
          if (ReluFused) {
            raw = std::max(0, raw);
          }
          output_data[j] =
              fbgemm::Requantize<T>(raw, out_requantization_params_);
        }
      }
    }
  } else { // InputTensorCPU_(0).template IsType<T>()
    vector<float*> input_data(InputSize());
    for (int i = 0; i < InputSize(); ++i) {
      input_data[i] = InputTensorCPU_(i).template data<float>();
    }

#ifdef _OPENMP
#pragma omp parallel
#endif
    {
      // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
      int j_begin, j_end;
      tie(j_begin, j_end) = Get1DPartition(
          len, dnnlowp_get_num_threads(), dnnlowp_get_thread_num());

      for (int j = j_begin; j < j_end; ++j) {
        int32_t acc = 0;
        for (int i = 0; i < InputSize(); ++i) {
          acc += fbgemm::Quantize<int32_t>(
              input_data[i][j],
              intermediate_qparams_.zero_point,
              intermediate_qparams_.scale,
              qfactory_->GetEltwiseQuantizePrecision());
        }
        int32_t raw = acc - intermediate_zero_point;
        if (ReluFused) {
          raw = std::max(0, raw);
        }
        output_data[j] = fbgemm::Requantize<T>(raw, out_requantization_params_);
      }
    }
  } // !InputTensorCPU_(0).template IsType<T>()

#ifdef DNNLOWP_MEASURE_TIME_BREAKDOWN
  t_end = chrono::system_clock::now();
  dt = chrono::duration<double>(t_end - t_begin).count();
  LOG(INFO) << "this=" << this << " requantize inputs: " << dt * 1e3 << " ms";

  t_begin = chrono::system_clock::now();
#endif

  RunOnDeviceEpilogue_();

#ifdef DNNLOWP_MEASURE_TIME_BREAKDOWN
  t_end = chrono::system_clock::now();
  dt = chrono::duration<double>(t_end - t_begin).count();
  LOG(INFO) << "this=" << this << " prologue: " << dt * 1e3 << " ms";

  t_begin = chrono::system_clock::now();
#endif

  return true;
} // DoRunQuantizedWithType_

template <typename T, bool ReluFused>
bool SumDNNLowPOp<T, ReluFused>::GetQuantizationParameters_() {
  using namespace dnnlowp;

  // Find global min and max of all inputs
  float global_min = numeric_limits<float>::max(),
        global_max = numeric_limits<float>::lowest();

  for (int i = 0; i < InputSize(); ++i) {
    in_qparams_[i] =
        GetInputTensorQuantizationParamsOf(this, i, qfactory_.get());

    global_min = std::min(global_min, in_qparams_[i].Min());
    global_max = std::max(global_max, in_qparams_[i].Max());
  }

  intermediate_qparams_ = qfactory_->ChooseQuantizationParams(
      global_min,
      global_max,
      qfactory_->GetEltwiseQuantizePrecision(),
      qfactory_->GetPreserveActivationSparsity());

  GetOutputQuantizationParams_();

  // requantize from the intermediate precision to the final precision
  float real_multiplier = intermediate_qparams_.scale / out_qparams_.scale;
  out_requantization_params_ =
      qfactory_->ChooseRequantizationMultiplier(real_multiplier, out_qparams_);

  return true;
}

OPERATOR_SCHEMA(SumRelu)
    .NumInputs(1, INT_MAX)
    .NumOutputs(1)
    .AllowInplace({{0, 0}})
    .InputsCanCrossDevices()
    .IdenticalTypeAndShapeOfInput(0)
    .Input(0, "data_0", "First of the input tensors. Can be inplace.")
    .Output(0, "sum", "Output tensor. Same dimension as inputs.");

REGISTER_CPU_OPERATOR_WITH_ENGINE(Sum, DNNLOWP, SumDNNLowPOp<uint8_t, false>);
REGISTER_CPU_OPERATOR_WITH_ENGINE(
    SumRelu,
    DNNLOWP,
    SumDNNLowPOp<uint8_t, true>);

REGISTER_CPU_OPERATOR_WITH_ENGINE(
    Int8Sum,
    DNNLOWP,
    SumDNNLowPOp<uint8_t, false>);
REGISTER_CPU_OPERATOR_WITH_ENGINE(
    Int8SumRelu,
    DNNLOWP,
    SumDNNLowPOp<uint8_t, true>);

REGISTER_CPU_OPERATOR_WITH_ENGINE(
    Sum,
    DNNLOWP_16,
    SumDNNLowPOp<uint16_t, false>);
REGISTER_CPU_OPERATOR_WITH_ENGINE(
    SumRelu,
    DNNLOWP_16,
    SumDNNLowPOp<uint16_t, true>);

} // namespace caffe2