1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <fbgemm/FbgemmFP16.h>
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/operators/fully_connected_op.h"
#include "caffe2/utils/conversions.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
/**
* C2 wrapper for fp16 gemm
*
* Suppose your predict_net has an FC operator in fp32 as follows:
* op {
* input: "x"
* input: "w"
* input: "b"
* output: "y"
* type: "FC"
* }
* ...
* external_input: "w"
*
* To use FbFCPacked operator with fp16 fbgemm, in init_net
* ... # an operator that generates w
* op {
* input: "w"
* output: "w_packed"
* type: "FbGemmPack"
* }
* ...
* external_output: "w_packed"
*
* in predict_net:
* op {
* input: "x"
* input: "w_packed"
* input: "b"
* output: "y"
* type: "FbFCPacked"
* }
* ...
* external_input: "w_packed"
*/
template <
class Context,
class Engine = DefaultEngine,
typename T_W = fbgemm::float16>
class FbFCPackedOperator final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
FbFCPackedOperator(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
axis_(this->template GetSingleArgument<int32_t>("axis", 1)),
axis_w_(this->template GetSingleArgument<int32_t>("axis_w", 1)) {}
~FbFCPackedOperator() {}
// template on X, B, and Y.
template <typename T_X, typename T_B, typename T_Y>
bool DoRunWithType() {
const auto& X = Input(0);
const auto& b = Input(2);
CAFFE_ENFORCE(b.dim() == 1, b.dim());
// batch size
const auto canonical_axis = X.canonical_axis_index(axis_);
const int M = X.size_to_dim(canonical_axis);
const int N = b.numel();
// Load the packed matrix
auto* W =
OperatorBase::Input<caffe2::unique_ptr<fbgemm::PackedGemmMatrixFP16>>(1)
.get();
const int K = W->numRows();
if (!W->packed()) {
if (!packed_w_) {
std::vector<float> src_mat(W->matSize());
for (int i = 0; i < W->matSize(); ++i) {
src_mat[i] =
fbgemm::cpu_half2float(W->pmat()[i]);
}
packed_w_ = std::make_unique<fbgemm::PackedGemmMatrixFP16>(
fbgemm::matrix_op_t::Transpose,
W->numRows(), W->numCols(),
1.0,
src_mat.data());
}
W = packed_w_.get();
}
auto dimErrorString = [&]() {
return c10::str(
"Dimension mismatch: ",
"X: ",
X.sizes(),
", W: ",
std::vector<int>({K, W->numCols()}),
", b: ",
b.sizes(),
", axis: ",
axis_,
", M: ",
M,
", N: ",
N,
", K: ",
K);
};
// Error checking
CAFFE_ENFORCE(M == X.numel() / K, dimErrorString());
CAFFE_ENFORCE(K == X.size_from_dim(canonical_axis), dimErrorString());
CAFFE_ENFORCE(N == W->numCols(), dimErrorString());
Y_shape_cache_ = X.sizes().vec();
// This is an invariant of canonical_axis, so we can DCHECK.
TORCH_DCHECK_LE(canonical_axis + 1, Y_shape_cache_.size());
Y_shape_cache_.resize(canonical_axis + 1);
Y_shape_cache_[canonical_axis] = N;
auto* Y = Output(0, Y_shape_cache_, at::dtype<T_Y>());
if (X.numel() == 0) {
// skip the rest of the computation if X is empty
Y->template mutable_data<T_Y>();
return true;
}
// Call the fp16 gemm interface
fbgemm::cblas_gemm_compute(
fbgemm::matrix_op_t::NoTranspose,
M,
X.template data<T_X>(),
*W,
0.f,
Y->template mutable_data<T_Y>());
// Add bias term, accumulation is still in fp32.
TensorProto::DataType math_type = TensorProto_DataType_FLOAT;
if (bias_multiplier_.numel() != M) {
// If the helper bias multiplier is not M, reshape and fill it with one.
bias_multiplier_.Resize(M);
math::Set<T_B, Context>(
M,
convert::To<float, T_B>(1),
bias_multiplier_.template mutable_data<T_B>(),
&context_);
}
math::Gemm<T_B, Context, Engine>(
CblasNoTrans,
CblasNoTrans,
M,
N,
1,
1,
bias_multiplier_.template data<T_B>(),
b.template data<T_B>(),
1,
Y->template mutable_data<T_Y>(),
&context_,
math_type);
return true;
}
bool RunOnDevice() override {
return DoRunWithType<
float, // X
float, // B
float>(); // Y
}
protected:
size_t axis_{1};
size_t axis_w_{1};
// A local vector to cache the output shape so we don't need to recreate
// a vector object every time we run Run().
vector<int64_t> Y_shape_cache_;
Tensor bias_multiplier_{Context::GetDeviceType()};
caffe2::unique_ptr<fbgemm::PackedGemmMatrixFP16> packed_w_{nullptr};
};
class PackedGemmMatrixFP16ShapeFunctions : public ExternalTensorFunctionsBase {
public:
explicit PackedGemmMatrixFP16ShapeFunctions()
: ExternalTensorFunctionsBase() {}
~PackedGemmMatrixFP16ShapeFunctions() override {}
bool isQuantized() const override {
return false;
}
bool IsSameMetaType(TypeIdentifier id) override;
void SetupExternalTensorDescriptor(
const Blob* blob,
std::vector<std::vector<uint64_t>>* shapes,
std::vector<std::vector<float>>* all_scales,
std::vector<std::vector<int32_t>>* all_offsets,
ExternalTensorDescriptor* desc) override;
void LoadInfoOfBlob(
const Blob* /* unused */,
std::vector<float>* /* unused */,
std::vector<float>* /* unused */,
uint32_t* /* unused */) override {}
TypeIdentifier GetTypeMetaId() override;
TypeMeta GetExternalTensorType(const void* c) override;
vector<int64_t> GetExternalTensorInfo(
const void* c,
size_t* capacity,
DeviceOption* device) override;
};
} // namespace caffe2
|