File: fully_connected_dnnlowp_acc16_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (288 lines) | stat: -rw-r--r-- 9,170 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#include "fully_connected_dnnlowp_acc16_op.h"

#include <fbgemm/src/RefImplementations.h>

#include "fbgemm_pack_op.h"

C10_DECLARE_int32(caffe2_dnnlowp_nbits_in_non_outlier);
C10_DECLARE_int32(caffe2_dnnlowp_copy_to_32bit_frequency);

namespace caffe2 {

FullyConnectedDNNLowPAcc16Op::FullyConnectedDNNLowPAcc16Op(
    const OperatorDef& operator_def,
    Workspace* ws)
    : FullyConnectedDNNLowPOp<uint8_t>(operator_def, ws),
      nbits_in_non_outlier_(this->template GetSingleArgument<int>(
          "nbits_in_non_outlier",
          FLAGS_caffe2_dnnlowp_nbits_in_non_outlier)),
      copy_to_32bit_frequency_(this->template GetSingleArgument<int>(
          "copy_to_32bit_frequency",
          FLAGS_caffe2_dnnlowp_copy_to_32bit_frequency)) {}

bool FullyConnectedDNNLowPAcc16Op::RunOnDevice() {
  using namespace std;
  using namespace dnnlowp;

  this->ParseDNNLowPOperatorArguments_();

  // Get quantization parameters
  if (!GetQuantizationParameters_()) {
    return false;
  }

  const auto& X = InputTensorCPU_(0);
  const auto& W = InputTensorCPU_(1);
  auto* Y = OutputTensorCPU_(0);
  const auto canonical_axis = X.canonical_axis_index(axis_);
  const auto M = X.size_to_dim(canonical_axis);
  const auto K = X.size_from_dim(canonical_axis);
  const auto canonical_axis_w = W.canonical_axis_index(axis_w_);
  const int N = W.size_to_dim(canonical_axis_w);

  // Quantize X
  vector<uint8_t> X_temp;
  const uint8_t* Xdata =
      QuantizeInputIfNeeded<uint8_t>(this, 0, in_qparams_[0], X_temp);

  if (this->quantize_channelwise_) {
    LOG(WARNING) << "FC with 16-bit accumulation doesn't work with per-channel "
                    "quantization yet.";
  }

  // Pack W if needed
  if (!Wq_acc16_packed_ || !is_weight_constant_) {
    if (this->template InputIsType<Int8FCDNNLowPPackedWeightBlob>(1)) {
      // If the input is already packed
      const auto& packed_filter =
          this->template Input<Int8FCDNNLowPPackedWeightBlob>(1);
      Wq_outlier_ = packed_filter.W_outlier;
      Wq_acc16_packed_ = packed_filter.W_acc16;

      if (nbits_in_non_outlier_ != packed_filter.nbits_in_non_outlier) {
        LOG(WARNING)
            << "nbits_in_non_outlier in packed weight "
            << packed_filter.nbits_in_non_outlier
            << " doesn't match with nbits_in_non_outlier specified in operator "
            << nbits_in_non_outlier_;
      }
    } else {
      if (!Wq_acc16_packed_ && nbits_in_non_outlier_ < 8) {
        static int log_occurences = 0;
        if (log_occurences < 32) {
          ++log_occurences;
          LOG(WARNING) << "FC DNNLOWP_ACC16 using outlier-aware quantization";
        }

        // Separate out outliers
        CAFFE_ENFORCE(!W_quantized_.empty());

        Wq_outlier_.reset(
            ExtractOutlierMatrix(1, K, N, nbits_in_non_outlier_, W_quantized_));
        int outlier_cnt = Wq_outlier_->ColPtr()[N];

        LOG(INFO) << "Proportion of outlier for FC layer with weight blob "
                  << this->debug_def().input(1) << " is "
                  << (float)outlier_cnt / W_quantized_.size();

        LOG(INFO) << "copy_to_32bit_frequency " << copy_to_32bit_frequency_;
      }

      // NOLINTNEXTLINE(modernize-make-shared)
      Wq_acc16_packed_.reset(new fbgemm::PackBMatrix<int8_t, int16_t>(
          fbgemm::matrix_op_t::Transpose,
          K,
          N,
          reinterpret_cast<const int8_t*>(W_quantized_.data()),
          K));

      if (is_weight_constant_) {
        vector<T_signed>().swap(W_quantized_);
      }
    }
  }

  Y_shape_cache_ = X.sizes().vec();
  Y_shape_cache_.resize(canonical_axis + 1);
  Y_shape_cache_[canonical_axis] = N;
  Y->Resize(Y_shape_cache_);

  using namespace fbgemm;
  // main GEMM
  // TODO : omp parallelization
  Y_int32_.resize(Y->size());
  uint8_t* Ydata = GetQuantizedOutputData_();
  if (nbits_in_non_outlier_ > 0) {
    int row_offset_size_per_thread =
        PackAWithRowOffset<uint8_t, int16_t>::rowOffsetBufferSize();
    int x_pack_buf_size_per_thread =
        PackAWithRowOffset<uint8_t, int16_t>::packedBufferSize();
    this->row_offsets_.resize(row_offset_size_per_thread);
    this->X_pack_buf_.resize(x_pack_buf_size_per_thread);

    // TODO: use PackAMatrix if filter_qparams_[0].zero_point == 0
    PackAWithRowOffset<uint8_t, int16_t> packA(
        matrix_op_t::NoTranspose,
        M,
        K,
        Xdata,
        K,
        X_pack_buf_.data(),
        1, // group
        row_offsets_.data());

    if (!dequantize_output_) {
      DoNothing<> doNothingObj{};
      ReQuantizeOutput<false /* fuse relu */> reqObj(
          doNothingObj,
          this->requantization_multipliers_.data(),
          out_qparams_.zero_point,
          column_offsets_->empty() ? 0 : in_qparams_[0].zero_point,
          this->filter_zero_points_.data(),
          packA.getRowOffsetBuffer(),
          column_offsets_->empty() ? nullptr : column_offsets_->data(),
          this->b_quantized_data_,
          N); // ncols per quant group

      if (nbits_in_non_outlier_ < 8) {
        DoSpmdmOnInpBuffer<
            typename ReQuantizeOutput<false /* fuse relu */>::outType,
            int32_t,
            ReQuantizeOutput<false /* fuse relu */>>
            spmdmObj(reqObj, Xdata, K, *Wq_outlier_);

        fbgemmPacked(
            packA,
            *Wq_acc16_packed_,
            Ydata,
            Y_int32_.data(),
            N,
            spmdmObj,
            0, // thread_id
            1); // num_threads
      } else {
        fbgemmPacked(
            packA,
            *Wq_acc16_packed_,
            Ydata,
            Y_int32_.data(),
            N,
            reqObj,
            0, // thread_id
            1); // num_threads
      }
    } else {
      DoNothing<float, float> doNothingObj{};
      ReQuantizeForFloat<false /* FUSE_RELU*/> reqObj(
          doNothingObj,
          in_qparams_[0].scale,
          this->filter_scales_.data(),
          column_offsets_->empty() ? 0 : in_qparams_[0].zero_point,
          this->filter_zero_points_.data(),
          packA.getRowOffsetBuffer(),
          column_offsets_->empty() ? nullptr : column_offsets_->data(),
          this->b_dequantized_data_,
          N); // ncols per quant group

      if (nbits_in_non_outlier_ < 8) {
        DoSpmdmOnInpBuffer<
            typename ReQuantizeForFloat<false /* fuse relu */>::outType,
            int32_t,
            ReQuantizeForFloat<false /* fuse relu */>>
            spmdmObj(reqObj, Xdata, K, *Wq_outlier_);

        fbgemmPacked(
            packA,
            *Wq_acc16_packed_,
            Y->mutable_data<float>(),
            Y_int32_.data(),
            N,
            spmdmObj,
            0, // thread_id
            1); // num_threads
      } else {
        fbgemmPacked(
            packA,
            *Wq_acc16_packed_,
            Y->mutable_data<float>(),
            Y_int32_.data(),
            N,
            reqObj,
            0, // thread_id
            1); // num_threads
      }
    }
  } else {
    block_type_t block{0, static_cast<int>(M), 0, static_cast<int>(N)};
    Wq_outlier_->SpMDM(
        block, Xdata, K, false /* accumulate */, Y_int32_.data(), N);

    if (dequantize_output_) {
      float* Ydata_float = Output(0)->template mutable_data<float>();

#pragma omp parallel for
      for (int i = 0; i < M; ++i) {
        int32_t row_offset = 0;
        for (int k = 0; k < K; ++k) {
          row_offset += Xdata[i * K + k];
        }

        for (int j = 0; j < N; ++j) {
          int quant_group = this->quantize_channelwise_ ? j : 0;
          Y_int32_[i * N + j] -=
              row_offset * this->filter_qparams_[quant_group].zero_point;
          if (!column_offsets_->empty()) {
            Y_int32_[i * N + j] -=
                in_qparams_[0].zero_point * (*column_offsets_)[j];
          }
          Ydata_float[i * N + j] = Y_int32_[i * N + j] * in_qparams_[0].scale *
                  in_qparams_[quant_group].scale +
              b_dequantized_data_[j];
        }
      }
    } else {
      // Add offsets/bias, and requantize
#pragma omp parallel for
      for (int i = 0; i < M; ++i) {
        int32_t row_offset = 0;
        for (int k = 0; k < K; ++k) {
          row_offset += Xdata[i * K + k];
        }

        requantize_u8acc32_ref(
            1,
            N,
            N,
            Y_int32_.data() + i * N,
            Ydata + i * N,
            this->requantization_multipliers_.data(),
            out_qparams_.zero_point,
            column_offsets_->empty() ? 0 : in_qparams_[0].zero_point,
            this->filter_zero_points_.data(),
            &row_offset,
            column_offsets_->empty() ? nullptr : column_offsets_->data(),
            b_quantized_->data(),
            N); // ncols per quant group
      }
    }
  }

  if (!dequantize_output_) {
    PropagateOutputTensorQuantizationParams(this, 0, out_qparams_);
  }
  MeasureQuantizationError_();

  return true;
}

REGISTER_CPU_OPERATOR_WITH_ENGINE(
    FC,
    DNNLOWP_ACC16,
    FullyConnectedDNNLowPAcc16Op);

REGISTER_CPU_OPERATOR_WITH_ENGINE(
    Int8FC,
    DNNLOWP_ACC16,
    FullyConnectedDNNLowPAcc16Op);

} // namespace caffe2