1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
import collections
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, workspace
from caffe2.quantization.server import utils as dnnlowp_utils
from caffe2.quantization.server.dnnlowp_test_utils import (
check_quantized_results_close,
run_conv_or_fc
)
from hypothesis import given
dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])
class DNNLowPFullyConnectedAcc16OpTest(hu.HypothesisTestCase):
# correctness test with no quantization error in inputs
# fbgemm currently only supports N a multiple of 64
@given(
input_channels=st.sampled_from([32, 64]),
output_channels=st.sampled_from([64, 128, 256]),
batch_size=st.sampled_from([0, 32, 64, 128, 256]),
in_quantized=st.booleans(),
out_quantized=st.booleans(),
**hu.gcs_cpu_only
)
def test_dnnlowp_fully_connected_acc16_int(
self,
input_channels,
output_channels,
batch_size,
in_quantized,
out_quantized,
gc,
dc,
):
# X and W have scale 1, so exactly represented after quantization
# This was made sure by having at least one 0 and one 255 for unsigned
# 8-bit tensors, and at least one -128 and one 127 for signed 8-bit
# tensors.
# Since fbgemm_acc16 accumulates to 16-bit, To avoid overflow, we use
# small numbers except for those 0, 255, -128, and 127, for this test
# We also make sure 255, -128, or 127 are not multiplied together by
# putting them in different input channels and the corresponding input
# channel in other matrix is 0.
# For example, we put 255 in input channel 1 in X, so we make the
# corresponding input channel in W all zeros.
X_min = -77
X_max = X_min + 255
X = np.round(np.random.rand(batch_size, input_channels) * 4 + X_min)
X = X.astype(np.float32)
X[:, 0] = X_min
if batch_size != 0:
X[0, 1] = X_max
W_min = -100
W_max = W_min + 255
W = np.round(
np.random.rand(output_channels, input_channels) * 4 - 2 + W_min + 128
)
W = W.astype(np.float32)
W[0, 0] = W_min
W[1, 0] = W_max
W[:, 1] = W_min + 128
# No input quantization error in bias
b = np.round(np.random.randn(output_channels)).astype(np.float32)
Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
outputs = []
op_engine_list = [
("FC", ""),
("FC", "DNNLOWP_ACC16"),
("Int8FC", "DNNLOWP_ACC16"),
]
for op_type, engine in op_engine_list:
net = core.Net("test_net")
do_quantize = "DNNLOWP" in engine and in_quantized
do_dequantize = "DNNLOWP" in engine and out_quantized
if do_quantize:
quantize = core.CreateOperator(
"Quantize", ["X"], ["X_q"], engine="DNNLOWP", device_option=gc
)
net.Proto().op.extend([quantize])
fc = core.CreateOperator(
op_type,
["X_q" if do_quantize else "X", "W", "b"],
["Y_q" if do_dequantize else "Y"],
dequantize_output=(0 if do_dequantize else 1),
engine=engine,
device_option=gc,
)
net.Proto().op.extend([fc])
if do_dequantize:
dequantize = core.CreateOperator(
"Dequantize", ["Y_q"], ["Y"], engine="DNNLOWP", device_option=gc
)
net.Proto().op.extend([dequantize])
run_conv_or_fc(
self, None, net, X, W, b, op_type, engine, None, gc, outputs
)
check_quantized_results_close(outputs)
@given(
input_channels=st.sampled_from([2]),
output_channels=st.sampled_from([4]),
batch_size=st.sampled_from([0, 1]),
nbits_in_non_outlier=st.sampled_from([0, 6]),
in_quantized=st.booleans(),
out_quantized=st.booleans(),
prepack_weight=st.booleans(),
**hu.gcs_cpu_only
)
def test_dnnlowp_fully_connected_acc16_outlier(
self,
input_channels,
output_channels,
batch_size,
nbits_in_non_outlier,
in_quantized,
out_quantized,
prepack_weight,
gc,
dc,
):
# X and W have scale 1, so exactly represented after quantization
# This was made sure by having at least one 0 and one 255 for unsigned
# 8-bit tensors, and at least one -128 and one 127 for signed 8-bit
# tensors.
# Since fbgemm_acc16 accumulates to 16-bit, To avoid overflow, we use
# small numbers except for those 0, 255, -128, and 127, for this test
# We also make sure 255, -128, or 127 are not multiplied together by
# putting them in different input channels and the corresponding input
# channel in other matrix is 0.
# For example, we put 255 in input channel 1 in X, so we make the
# corresponding input channel in W all zeros.
X_min = -77
X_max = X_min + 255
X = np.round(np.random.rand(batch_size, input_channels) * 4 + X_min)
X = X.astype(np.float32)
X[:, 0] = X_min
if batch_size != 0:
X[0, 1] = X_max
W_min = -100
W_max = W_min + 255
W = np.round(
np.random.rand(output_channels, input_channels) * 4 - 2 + W_min + 128
)
W = W.astype(np.float32)
W[0, 0] = W_min
W[1, 0] = W_max
W[:, 1] = W_min + 128
# No input quantization error in bias
b = np.round(np.random.randn(output_channels)).astype(np.float32)
Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
outputs = []
op_engine_list = [
("FC", ""),
("FC", "DNNLOWP_ACC16"),
("Int8FC", "DNNLOWP_ACC16"),
]
for op_type, engine in op_engine_list:
init_net = core.Net("test_init_net")
net = core.Net("test_net")
do_quantize = "DNNLOWP" in engine and in_quantized
do_dequantize = "DNNLOWP" in engine and out_quantized
do_prepack_weight = engine == "DNNLOWP" and prepack_weight
if do_quantize:
quantize = core.CreateOperator(
"Quantize", ["X"], ["X_q"], engine="DNNLOWP", device_option=gc
)
net.Proto().op.extend([quantize])
X_min = 0 if X.size == 0 else X.min()
X_max = 0 if X.size == 0 else X.max()
x_q_param = dnnlowp_utils.choose_quantization_params(X_min, X_max)
if do_prepack_weight:
inputs = ["W"]
if do_dequantize:
inputs += ["b"]
pack = core.CreateOperator(
"Int8FCPackWeight",
inputs,
["W_packed"],
in_scale=x_q_param.scale,
engine=engine,
)
init_net.Proto().op.extend([pack])
fc = core.CreateOperator(
op_type,
[
"X_q" if do_quantize else "X",
"W_packed" if do_prepack_weight else "W",
"b",
],
["Y_q" if do_dequantize else "Y"],
dequantize_output=(0 if do_dequantize else 1),
engine=engine,
nbits_in_non_outlier=nbits_in_non_outlier,
device_option=gc,
)
net.Proto().op.extend([fc])
if do_dequantize:
dequantize = core.CreateOperator(
"Dequantize", ["Y_q"], ["Y"], engine="DNNLOWP", device_option=gc
)
net.Proto().op.extend([dequantize])
run_conv_or_fc(
self, init_net, net, X, W, b, op_type, engine, None, gc, outputs
)
check_quantized_results_close(outputs)
|