File: fully_connected_dnnlowp_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (290 lines) | stat: -rw-r--r-- 10,748 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290


import collections

import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, workspace
from caffe2.quantization.server import utils as dnnlowp_utils
from caffe2.quantization.server.dnnlowp_test_utils import (
    avoid_vpmaddubsw_overflow_fc,
    check_quantized_results_close,
    run_conv_or_fc,
)
from hypothesis import given


dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])


class DNNLowPFullyConnectedOpTest(hu.HypothesisTestCase):
    # correctness test with no quantization error in inputs
    @given(
        input_channels=st.sampled_from([3, 4, 5, 8, 16, 32]),
        output_channels=st.integers(2, 16),
        batch_size=st.integers(0, 16),
        in_quantized=st.booleans(),
        out_quantized=st.booleans(),
        weight_quantized=st.booleans(),
        prepack_weight=st.booleans(),
        preserve_activation_sparsity=st.booleans(),
        preserve_weight_sparsity=st.booleans(),
        fuse_relu=st.booleans(),
        output_packed_bias=st.booleans(),
        use_input_qparam=st.booleans(),
        use_output_qparam=st.booleans(),
        **hu.gcs_cpu_only
    )
    def test_dnnlowp_fully_connected_int(
        self,
        input_channels,
        output_channels,
        batch_size,
        in_quantized,
        out_quantized,
        weight_quantized,
        prepack_weight,
        preserve_activation_sparsity,
        preserve_weight_sparsity,
        fuse_relu,
        output_packed_bias,
        use_input_qparam,
        use_output_qparam,
        gc,
        dc,
    ):
        # X and W have scale 1, so exactly represented after quantization
        X_min = 0 if preserve_activation_sparsity else -77
        X_max = X_min + 255
        X = np.round(
            np.random.rand(batch_size, input_channels) * (X_max - X_min) + X_min
        )
        X = X.astype(np.float32)
        # input channels 0 and 1 are all X_min to avoid overflow from vpmaddubsw
        # when multiplied with W_min and W_max
        X[:, 0] = X_min
        if batch_size != 0:
            X[0, 1] = X_max

        if preserve_weight_sparsity:
            W_min = -128
            W_max = 100
        else:
            W_min = -100
            W_max = W_min + 255
        W = np.round(
            np.random.rand(output_channels, input_channels) * (W_max - W_min) + W_min
        )
        W = W.astype(np.float32)
        W[0, 0] = W_min
        W[1, 0] = W_max

        # Make sure we won't have overflows from vpmaddubsw instruction used in
        # fbgemm
        avoid_vpmaddubsw_overflow_fc(
            batch_size,
            input_channels,
            output_channels,
            X,
            X_min,
            X_max,
            W,
            W_min,
            W_max,
        )

        b = np.random.randn(output_channels).astype(np.float32)

        Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
        outputs = []

        op_engine_list = [("FC", "", False, False)]
        if fuse_relu:
            op_engine_list += [("Int8FCRelu", "DNNLOWP", False, False)]
        else:
            op_engine_list += [
                # type, engine, do_fuse, skip_requantization
                ("FC", "DNNLOWP", False, False),
                ("FC", "DNNLOWP_16", False, False),
                ("Int8FC", "DNNLOWP", False, False),
                ("Int8FC", "DNNLOWP", True, False),
                ("Int8FC", "DNNLOWP", False, True),
                ("Int8FC", "DNNLOWP", True, True),
            ]

        for op_type, engine, do_fuse, skip_requantization in op_engine_list:
            init_net = core.Net("test_init_net")
            net = core.Net("test_net")

            do_quantize = "DNNLOWP" in engine and in_quantized and not do_fuse
            do_dequantize = "DNNLOWP" in engine and out_quantized and not skip_requantization
            do_quantize_weight = (
                engine == "DNNLOWP" and weight_quantized and len(outputs) > 0
            )
            do_prepack_weight = engine == "DNNLOWP" and prepack_weight

            if do_quantize:
                quantize = core.CreateOperator(
                    "Quantize",
                    ["X"],
                    ["X_q"],
                    preserve_activation_sparsity=preserve_activation_sparsity,
                    engine=engine,
                    device_option=gc,
                )
                net.Proto().op.extend([quantize])

            X_min = 0 if X.size == 0 else X.min()
            X_max = 0 if X.size == 0 else X.max()
            x_q_param = dnnlowp_utils.choose_quantization_params(
                X_min, X_max, preserve_activation_sparsity
            )
            w_q_param = None
            if do_quantize_weight:
                (
                    int8_given_tensor_fill,
                    w_q_param,
                ) = dnnlowp_utils.create_int8_given_tensor_fill(
                    W, "W_q", preserve_weight_sparsity
                )
                init_net.Proto().op.extend([int8_given_tensor_fill])

                # Bias
                int8_bias_tensor_fill = dnnlowp_utils.create_int8_bias_tensor_fill(
                    b, "b_q", x_q_param, w_q_param
                )
                init_net.Proto().op.extend([int8_bias_tensor_fill])

            if do_prepack_weight:
                inputs = ["W_q" if do_quantize_weight else "W"]
                if do_dequantize:
                    inputs += ["b_q" if do_quantize_weight else "b"]
                pack = core.CreateOperator(
                    "Int8FCPackWeight",
                    inputs,
                    ["W_packed", "B_q32"]
                    if do_dequantize and output_packed_bias
                    else ["W_packed"],
                    preserve_weight_sparsity=preserve_weight_sparsity,
                    in_scale=x_q_param.scale,
                    engine=engine,
                )
                init_net.Proto().op.extend([pack])

            fc = core.CreateOperator(
                op_type,
                [
                    "X_q" if do_quantize else "X",
                    "W_packed"
                    if do_prepack_weight
                    else ("W_q" if do_quantize_weight else "W"),
                    "b_q" if do_quantize_weight else "b",
                    # "quant_param",
                ],
                ["Y_q" if do_dequantize else "Y"],
                dequantize_output=not do_dequantize,
                preserve_activation_sparsity=preserve_activation_sparsity,
                preserve_weight_sparsity=preserve_weight_sparsity,
                engine=engine,
                device_option=gc,
            )
            if op_type != "FC":
                if (do_dequantize and use_output_qparam) or (use_input_qparam and op_type == "Int8_FC"):
                    fc.input.extend(["quant_param"])
                if (use_input_qparam and op_type == "Int8_FC"):
                    fc.input.extend(["X_quant_param"])

            if do_quantize_weight or do_prepack_weight:
                # When quantized weight is provided, we can't rescale the
                # output dynamically by looking at the range of output of each
                # batch, so here we provide the range of output observed from
                # fp32 reference implementation
                dnnlowp_utils.add_quantization_param_args(
                    fc, outputs[0][0], preserve_activation_sparsity
                )

            net.Proto().op.extend([fc])
            if fuse_relu and "DNNLOWP" not in engine:
                net.Relu(["Y"], "Y")

            if do_dequantize:
                dequantize = core.CreateOperator(
                    "Dequantize", ["Y_q"], ["Y"], engine=engine, device_option=gc
                )
                net.Proto().op.extend([dequantize])



            if use_output_qparam and do_dequantize and op_type != "FC":
                ref_output = outputs[0][0]
                ref_output_min = 0 if ref_output.size == 0 else ref_output.min()
                ref_output_max = 0 if ref_output.size == 0 else ref_output.max()

                q_param = dnnlowp_utils.choose_quantization_params(
                    ref_output_min, ref_output_max, preserve_activation_sparsity
                )
                q_param_scale = q_param.scale
                q_param_zero_point = q_param.zero_point
            else:
                q_param_scale = None
                q_param_zero_point = None

            if not (use_input_qparam and op_type == "Int8FC"):
                x_q_param_scale = None
                x_q_param_zero_point = None
            else:
                x_q_param_scale = x_q_param.scale
                x_q_param_zero_point = x_q_param.zero_point

            run_conv_or_fc(
                self,
                init_net,
                net,
                X,
                W,
                b,
                op_type,
                engine,
                None,
                gc,
                outputs,
                q_param_scale,
                q_param_zero_point,
                x_q_param_scale,
                x_q_param_zero_point,
            )


            if output_packed_bias and do_prepack_weight and do_dequantize:
                bias_int32 = self.ws.blobs["B_q32"].fetch()
                if do_quantize_weight:
                    np.testing.assert_equal(
                        bias_int32[0], np.round(b / (x_q_param.scale * w_q_param.scale))
                    )
                np.testing.assert_equal(bias_int32[0].dtype, np.int32)

            shapes, types = workspace.InferShapesAndTypes(
                [init_net, net],
                blob_dimensions={
                    "X": [batch_size, input_channels],
                    "W": [output_channels, input_channels],
                    "b": [output_channels],
                    "quant_param": [1],
                    "X_quant_param": [1],
                },
                blob_types={
                    "X": core.DataType.FLOAT,
                    "W": core.DataType.FLOAT,
                    "b": core.DataType.FLOAT,
                    "quant_param": core.DataType.FLOAT,
                    "X_quant_param": core.DataType.FLOAT,
                },
            )
            assert (
                "Y" in shapes and "Y" in types
            ), "Failed to infer the shape or type of Y"
            self.assertEqual(shapes["Y"], [batch_size, output_channels])
            self.assertEqual(types["Y"], core.DataType.FLOAT)
        check_quantized_results_close(outputs, symmetric=preserve_activation_sparsity)