1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#ifdef __x86_64__
#include <immintrin.h>
#endif
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/conversions.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
// convert to float16 reducing mantissa, preserving exponent
void fp32_to_bfp16(const float* source, size_t size, float* dest);
// convert to float24 reducing mantissa, preserving exponent
void fp32_to_bfp24(const float* source, size_t size, float* dest);
// convert to float14 reducing mantissa, preserving exponent
void fp32_to_bfp14(const float* source, size_t size, float* dest);
void fp32_to_bfp16_scalar(const float* source, size_t size, float* dest);
// convert to IEEE float16
void fp32_to_fp16(const float* source, size_t size, float* dest);
// fp32 -> int32 -> += 1<< 15 -> fp32 -> truncation
void fp32_to_bfp16_round(const float* source, size_t size, float* dest);
// This is Caffe's InnerProductOp, with a name that fits its purpose better.
template <
void (*Q)(const float*, size_t, float*),
class Context,
class Engine = DefaultEngine,
bool TransposeWeight = true>
class FullyConnectedFakeLowpFPOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
FullyConnectedFakeLowpFPOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
axis_(this->template GetSingleArgument<int32_t>("axis", 1)),
axis_w_(this->template GetSingleArgument<int32_t>("axis_w", 1)),
float16_compute_(
this->template GetSingleArgument<bool>("float16_compute", false)) {}
~FullyConnectedFakeLowpFPOp() {}
template <
typename T_X,
typename T_W,
typename T_B,
typename T_Y,
typename MATH>
bool DoRunWithType();
bool RunOnDevice() override {
return DoRunWithType<
float, // X
float, // W
float, // B
float, // Y
float>(); // Math
}
protected:
size_t axis_{1};
size_t axis_w_{1};
// A local vector to cache the output shape so we don't need to recreate
// a vector object every time we run Run().
vector<int64_t> Y_shape_cache_;
Tensor bias_multiplier_;
bool float16_compute_;
};
template <
void (*Q)(const float*, size_t, float*),
class Context,
class Engine = DefaultEngine,
bool TransposeWeight = true>
class FullyConnectedGradientFakeLowpFPOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
FullyConnectedGradientFakeLowpFPOp(
const OperatorDef& operator_def,
Workspace* ws)
: Operator<Context>(operator_def, ws),
axis_(this->template GetSingleArgument<int32_t>("axis", 1)),
axis_w_(this->template GetSingleArgument<int32_t>("axis_w", 1)),
float16_compute_(
this->template GetSingleArgument<bool>("float16_compute", false)) {}
~FullyConnectedGradientFakeLowpFPOp() {}
template <
typename T_X,
typename T_W,
typename T_DY,
typename T_B,
typename T_DX,
typename T_DW,
typename T_DB,
typename MATH>
bool DoRunWithType();
bool RunOnDevice() override {
return DoRunWithType<
float, // X
float, // W
float, // dY
float, // B
float, // dX
float, // dW
float, // dB
float>(); // Math
}
protected:
size_t axis_{1};
size_t axis_w_{1};
Tensor bias_multiplier_;
bool float16_compute_;
};
} // namespace caffe2
|