File: group_norm_dnnlowp_op.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (213 lines) | stat: -rw-r--r-- 4,610 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#pragma once

#include <vector>

#include "caffe2/operators/group_norm_op.h"
#include "caffe2/quantization/server/dnnlowp_op.h"

namespace caffe2 {

using GroupNormFP32Op = GroupNormOp<float, CPUContext>;

template <typename T>
class GroupNormDNNLowPOp final : public DNNLowPOp<T, GroupNormFP32Op> {
 public:
  USE_OPERATOR_FUNCTIONS(CPUContext);
  USE_DNNLOWP_OPERATOR_BASE_FUNCTIONS(T, GroupNormFP32Op);

  GroupNormDNNLowPOp(const OperatorDef& operator_def, Workspace* ws);

  bool RunOnDevice() override;

 private:
  bool GetQuantizationParameters();

  void QuantizeGamma();

  void QuantizeGammaImpl();

  void QuantizeBeta();

  bool RunOnDeviceWithOrderNCHW();

  bool RunOnDeviceWithOrderNHWC();

  void QuantizedGroupMomentsNCHW(
      int N,
      int G,
      int K,
      int HxW,
      const T* X,
      int32_t* mu,
      int32_t* rsig);

  void QuantizedGroupMomentsNHWC(
      int N,
      int G,
      int K,
      int HxW,
      const T* X,
      int32_t* mu,
      int32_t* rsig);

  void DequantizedGroupMomentsNCHW(
      int N,
      int G,
      int K,
      int HxW,
      const T* X,
      float* mu,
      float* rsig);

  void DequantizedGroupMomentsNHWC(
      int N,
      int G,
      int K,
      int HxW,
      const T* X,
      float* mu,
      float* rsig);

  void ComputeQuantizedInvStd(
      int N,
      const float* var,
      float* rsig,
      int32_t* rsig_quantized);

  void ComputeQuantizedFusedParams(
      int N,
      int G,
      int K,
      const int32_t* mu,
      const int32_t* rsig,
      const int32_t* gamma,
      const int32_t* beta,
      int32_t* scale,
      int32_t* bias);

  void ComputeDequantizedFusedParams(
      int N,
      int G,
      int K,
      const float* mu,
      const float* rsig,
      const float* gamma,
      const float* beta,
      float* scale,
      float* bias);

  void AffineBatchChannelQuantizedNCHW(
      int N,
      int C,
      int HxW,
      const T* X,
      const int32_t* scale,
      const int32_t* bias,
      T* Y);

  void AffineBatchChannelQuantizedNHWC(
      int N,
      int C,
      int HxW,
      const T* X,
      const int32_t* scale,
      const int32_t* bias,
      T* Y);

  void AffineBatchChannelDequantizedNCHW(
      int N,
      int C,
      int HxW,
      const float* X,
      const float* scale,
      const float* bias,
      float* Y);

  void AffineBatchChannelDequantizedNHWC(
      int N,
      int C,
      int HxW,
      const float* X,
      const float* scale,
      const float* bias,
      float* Y);

  const bool is_test_;
  const int group_;
  const float epsilon_;
  const StorageOrder order_;
  const bool is_param_constant_;

  std::vector<int32_t> mu_quantized_;
  std::vector<int32_t> rsig_quantized_;
  std::vector<float> mu_dequantized_;
  std::vector<float> rsig_dequantized_;
  dnnlowp::TensorQuantizationParams rsig_qparams_;

  std::vector<int32_t> gamma_quantized_;
  std::vector<int32_t> beta_quantized_;
  std::vector<float> gamma_dequantized_;
  std::vector<float> beta_dequantized_;
  const int32_t* gamma_quantized_data_ = nullptr;
  const int32_t* beta_quantized_data_ = nullptr;
  const float* gamma_dequantized_data_ = nullptr;
  const float* beta_dequantized_data_ = nullptr;

  std::vector<int32_t> scale_quantized_;
  std::vector<int32_t> bias_quantized_;
  std::vector<float> scale_dequantized_;
  std::vector<float> bias_dequantized_;
  dnnlowp::TensorQuantizationParams internal_qparams_;

  std::vector<float> X_dequantized_;
  std::vector<int32_t> Y_int32_;

  float cached_X_qparams_scale_ = 0.0f;

  // Input: X, gamma, beta
  // Output: Y, mu, inv_sig
  INPUT_TAGS(INPUT, GAMMA, BETA);
  OUTPUT_TAGS(OUTPUT, MU, INV_SIGMA);
};

namespace internal {

template <typename T>
void VectorMomentsAVX2(const int N, const T* src, int64_t* sum, int64_t* sumsq);

void ComputeQuantizedFusedParamsAVX2(
    const int N,
    const int G,
    const int K,
    const int32_t X_zero_point,
    const int32_t* mu,
    const int32_t* rsig,
    const int32_t* gamma,
    int32_t* scale,
    int32_t* bias);

template <typename T>
void AffineBatchChannelAndRequantizeNCHWAVX2(
    const int N,
    const int C,
    const int HxW,
    const dnnlowp::RequantizationParams& params,
    const T* X,
    const int32_t* scale,
    const int32_t* bias,
    T* Y);

template <typename T>
void AffineBatchChannelAndRequantizeNHWCAVX2(
    const int N,
    const int C,
    const int HxW,
    const dnnlowp::RequantizationParams& params,
    const T* X,
    const int32_t* scale,
    const int32_t* bias,
    T* Y);

} // namespace internal

} // namespace caffe2