1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
#include <cstdint>
#include <limits>
#include <immintrin.h>
#ifdef _OPENMP
#include <omp.h>
#endif
#include <fbgemm/QuantUtils.h>
namespace caffe2 {
namespace internal {
template <typename T>
void SegmentMomentsAVX2(
const int N,
const T* src,
int64_t* sum,
int64_t* sumsq);
template <>
void SegmentMomentsAVX2<uint8_t>(
const int N,
const uint8_t* src,
int64_t* sum,
int64_t* sumsq) {
constexpr int kVLen = 16;
const int n = N / kVLen * kVLen;
const int r = N % kVLen;
const __m256i kOneInt16 = _mm256_set1_epi16(0x01);
__m256i sum_v = _mm256_setzero_si256();
__m256i sumsq_v = _mm256_setzero_si256();
for (int i = 0; i < n; i += kVLen) {
const __m256i cur_v = _mm256_cvtepu8_epi16(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(src + i)));
sum_v = _mm256_add_epi32(sum_v, _mm256_madd_epi16(cur_v, kOneInt16));
sumsq_v = _mm256_add_epi32(sumsq_v, _mm256_madd_epi16(cur_v, cur_v));
}
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-magic-numbers)
int32_t sum_arr[8];
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-magic-numbers)
int32_t sumsq_arr[8];
_mm256_storeu_si256(reinterpret_cast<__m256i*>(sum_arr), sum_v);
_mm256_storeu_si256(reinterpret_cast<__m256i*>(sumsq_arr), sumsq_v);
for (int i = 0; i < 8; ++i) {
*sum += static_cast<int64_t>(sum_arr[i]);
*sumsq += static_cast<int64_t>(sumsq_arr[i]);
}
for (int i = 0; i < r; ++i) {
*sum += static_cast<int64_t>(src[n + i]);
*sumsq +=
static_cast<int64_t>(src[n + i]) * static_cast<int64_t>(src[n + i]);
}
}
template <typename T>
void VectorMomentsAVX2(const int N, const T* src, int64_t* sum, int64_t* sumsq);
template <>
void VectorMomentsAVX2<uint8_t>(
const int N,
const uint8_t* src,
int64_t* sum,
int64_t* sumsq) {
constexpr int kVLen = 32768;
const int n = N / kVLen * kVLen;
const int r = N % kVLen;
for (int i = 0; i < n; i += kVLen) {
SegmentMomentsAVX2<uint8_t>(kVLen, src + i, sum, sumsq);
}
if (r > 0) {
SegmentMomentsAVX2<uint8_t>(r, src + n, sum, sumsq);
}
}
void ComputeQuantizedFusedParamsAVX2(
const int N,
const int G,
const int K,
const int32_t X_zero_point,
const int32_t* mu,
const int32_t* rsig,
const int32_t* gamma,
int32_t* scale,
int32_t* bias) {
constexpr int kVLen = 8;
const int k = K / kVLen * kVLen;
const int r = K % kVLen;
for (int n = N - 1; n >= 0; --n) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int g = 0; g < G; ++g) {
const __m256i mu_v = _mm256_set1_epi32(mu[n * G + g] + X_zero_point);
const __m256i rsig_v = _mm256_set1_epi32(rsig[n * G + g]);
for (int i = 0; i < k; i += kVLen) {
const __m256i gamma_v =
_mm256_loadu_si256((const __m256i*)(gamma + g * K + i));
const __m256i beta_v =
_mm256_loadu_si256((const __m256i*)(bias + g * K + i));
__m256i scale_v = _mm256_mullo_epi32(gamma_v, rsig_v);
__m256i bias_v =
_mm256_sub_epi32(beta_v, _mm256_mullo_epi32(scale_v, mu_v));
const int offset = (n * G + g) * K + i;
_mm256_storeu_si256((__m256i*)(scale + offset), scale_v);
_mm256_storeu_si256((__m256i*)(bias + offset), bias_v);
}
for (int i = 0; i < r; ++i) {
const int offset = (n * G + g) * K + k + i;
scale[offset] = gamma[g * K + k + i] * rsig[n * G + g];
bias[offset] = bias[g * K + k + i] -
scale[offset] * (mu[n * G + g] + X_zero_point);
}
}
}
}
#define INIT_REQUANTIZE_AVX2 \
const __m256i b = _mm256_set1_epi32(params.multiplier); \
const __m256i prev_shift_nudge = _mm256_set1_epi64x( \
(1ll << (params.right_shift - 1)) + 0x8000000000000000ULL); \
const __m256i post_shift_nudge = _mm256_set1_epi64x( \
params.target_qparams.zero_point - \
(0x8000000000000000ULL >> params.right_shift)); \
const __m256i min_v = \
_mm256_set1_epi32(std::numeric_limits<uint8_t>::min()); \
const __m256i max_v = \
_mm256_set1_epi32(std::numeric_limits<uint8_t>::max()); \
const __m256i shuffle_mask_v = _mm256_set_epi8( \
0xff, \
0xff, \
0xff, \
0xff, \
0xff, \
0xff, \
0xff, \
0xff, \
0xff, \
0xff, \
0xff, \
0xff, \
0x0c, \
0x08, \
0x04, \
0x00, \
0xff, \
0xff, \
0xff, \
0xff, \
0xff, \
0xff, \
0xff, \
0xff, \
0xff, \
0xff, \
0xff, \
0xff, \
0x0c, \
0x08, \
0x04, \
0x00); \
const __m256i permute_mask_v = \
_mm256_set_epi32(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00);
#define REQUANTIZE_AVX2(params, src, dst) \
do { \
__m256i a_v = (src); \
__m256i a_even_v = a_v; \
__m256i a_odd_v = _mm256_srli_si256(a_v, 4); \
__m256i ab_even_v = _mm256_mul_epi32(a_even_v, b); \
__m256i ab_odd_v = _mm256_mul_epi32(a_odd_v, b); \
__m256i even_rounded_v = _mm256_add_epi64(ab_even_v, prev_shift_nudge); \
__m256i odd_rounded_v = _mm256_add_epi64(ab_odd_v, prev_shift_nudge); \
__m256i even_result_v = _mm256_add_epi64( \
_mm256_srli_epi64(even_rounded_v, params.right_shift), \
post_shift_nudge); \
__m256i odd_result_v = _mm256_add_epi64( \
_mm256_srli_epi64(odd_rounded_v, params.right_shift), \
post_shift_nudge); \
odd_result_v = _mm256_slli_si256(odd_result_v, 4); \
__m256i result_v = _mm256_blend_epi32(even_result_v, odd_result_v, 0xaa); \
__m256i clipped_v = \
_mm256_max_epi32(min_v, _mm256_min_epi32(max_v, result_v)); \
clipped_v = _mm256_shuffle_epi8(clipped_v, shuffle_mask_v); \
clipped_v = _mm256_permutevar8x32_epi32(clipped_v, permute_mask_v); \
*(int64_t*)(dst) = _mm256_extract_epi64(clipped_v, 0); \
} while (false)
template <typename T>
void AffineBatchChannelAndRequantizeNCHWAVX2(
const int N,
const int C,
const int HxW,
const fbgemm::RequantizationParams& params,
const T* X,
const int32_t* scale,
const int32_t* bias,
T* Y);
template <>
void AffineBatchChannelAndRequantizeNCHWAVX2<uint8_t>(
const int N,
const int C,
const int HxW,
const fbgemm::RequantizationParams& params,
const uint8_t* X,
const int32_t* scale,
const int32_t* bias,
uint8_t* Y) {
INIT_REQUANTIZE_AVX2;
constexpr int kVLen = 8;
const int outer_size = N * C;
const int n = HxW / kVLen * kVLen;
const int r = HxW % kVLen;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < outer_size; ++i) {
const uint8_t* X_ptr = X + i * HxW;
uint8_t* Y_ptr = Y + i * HxW;
const __m256i scale_v = _mm256_set1_epi32(scale[i]);
const __m256i bias_v = _mm256_set1_epi32(bias[i]);
for (int j = 0; j < n; j += kVLen) {
const __m256i cur_v =
_mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*)(X_ptr + j)));
REQUANTIZE_AVX2(
params,
_mm256_add_epi32(_mm256_mullo_epi32(cur_v, scale_v), bias_v),
(Y_ptr + j));
}
for (int j = 0; j < r; ++j) {
Y_ptr[n + j] = fbgemm::Requantize<uint8_t>(
static_cast<int32_t>(X_ptr[n + j]) * scale[i] + bias[i], params);
}
}
}
template <typename T>
void AffineBatchChannelAndRequantizeNHWCAVX2(
const int N,
const int C,
const int HxW,
const fbgemm::RequantizationParams& params,
const T* X,
const int32_t* scale,
const int32_t* bias,
T* Y);
template <>
void AffineBatchChannelAndRequantizeNHWCAVX2<uint8_t>(
const int N,
const int C,
const int HxW,
const fbgemm::RequantizationParams& params,
const uint8_t* X,
const int32_t* scale,
const int32_t* bias,
uint8_t* Y) {
INIT_REQUANTIZE_AVX2;
constexpr int kVLen = 8;
const int outer_size = N * HxW;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < outer_size; ++i) {
const int c = i / HxW * C;
const int n = C / kVLen * kVLen;
const int r = C % kVLen;
const uint8_t* X_ptr = X + i * C;
uint8_t* Y_ptr = Y + i * C;
for (int j = 0; j < n; j += kVLen) {
const __m256i cur_v =
_mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*)(X_ptr + j)));
const __m256i scale_v =
_mm256_loadu_si256((const __m256i*)(scale + c + j));
const __m256i bias_v = _mm256_loadu_si256((const __m256i*)(bias + c + j));
REQUANTIZE_AVX2(
params,
_mm256_add_epi32(_mm256_mullo_epi32(cur_v, scale_v), bias_v),
(Y_ptr + j));
}
for (int j = 0; j < r; ++j) {
Y_ptr[n + j] = fbgemm::Requantize<uint8_t>(
static_cast<int32_t>(X_ptr[n + j]) * scale[c + n + j] +
bias[c + n + j],
params);
}
}
}
#undef REQUANTIZE_AVX2
#undef INIT_REQUANTIZE_AVX2
} // namespace internal
} // namespace caffe2
|