1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
#pragma once
#ifdef _OPENMP
#include <omp.h>
#endif
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
#include "caffe2/utils/math/utils.h"
namespace caffe2 {
namespace math {
template <typename T>
static void Im2ColNCHW(
const int channels,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int dilation_h,
const int dilation_w,
const int pad_t,
const int pad_l,
const int pad_b,
const int pad_r,
const int stride_h,
const int stride_w,
const T* data_im,
T* data_col,
CPUContext* /*context*/,
const T& zero_point = 0) {
const int output_h =
(height + pad_b + pad_t - (dilation_h * (kernel_h - 1) + 1)) / stride_h +
1;
const int output_w =
(width + pad_l + pad_r - (dilation_w * (kernel_w - 1) + 1)) / stride_w +
1;
// Fast path for zero padding and no dilation
// From Torch, THNN_(unfolded_copy)
if (dilation_h == 1 && dilation_w == 1 && pad_l == 0 && pad_r == 0 &&
pad_t == 0 && pad_b == 0) {
for (auto k = 0; k < channels * kernel_h * kernel_w; k++) {
const auto nip = k / (kernel_h * kernel_w);
const auto rest = k % (kernel_h * kernel_w);
const auto kh = rest / kernel_w;
const auto kw = rest % kernel_w;
auto* dst = data_col + nip * (kernel_h * kernel_w * output_h * output_w) +
kh * (kernel_w * output_h * output_w) + kw * (output_h * output_w);
const auto* src = data_im + nip * (height * width);
for (const auto y : c10::irange(output_h)) {
const auto iy = y * stride_h + kh;
const auto ix = kw;
if (stride_w == 1) {
memcpy(
dst + (y * output_w),
src + (iy * width + ix),
sizeof(T) * output_w);
} else {
for (const auto x : c10::irange(output_w)) {
memcpy(
dst + (y * output_w + x),
src + (iy * width + ix + x * stride_w),
sizeof(T));
}
}
}
}
return;
}
// Fast path for equal padding
if (pad_l == pad_r && pad_t == pad_b) {
// From Intel, https://github.com/BVLC/caffe/pull/3536
const int pad_h = pad_t;
const int pad_w = pad_l;
const int channel_size = height * width;
for (int channel = channels; channel--; data_im += channel_size) {
for (const auto kernel_row : c10::irange(kernel_h)) {
for (const auto kernel_col : c10::irange(kernel_w)) {
int input_row = -pad_h + kernel_row * dilation_h;
for (int output_rows = output_h; output_rows; output_rows--) {
if (!utils::IsAGeZeroAndALtB(input_row, height)) {
for (int output_cols = output_w; output_cols; output_cols--) {
*(data_col++) = zero_point;
}
} else {
int input_col = -pad_w + kernel_col * dilation_w;
for (int output_col = output_w; output_col; output_col--) {
if (utils::IsAGeZeroAndALtB(input_col, width)) {
*(data_col++) = data_im[input_row * width + input_col];
} else {
*(data_col++) = zero_point;
}
input_col += stride_w;
}
}
input_row += stride_h;
}
}
}
}
return;
}
// Baseline
const int dkernel_h = dilation_h * (kernel_h - 1) + 1;
const int dkernel_w = dilation_w * (kernel_w - 1) + 1;
int height_col = (height + pad_t + pad_b - dkernel_h) / stride_h + 1;
int width_col = (width + pad_l + pad_r - dkernel_w) / stride_w + 1;
int channels_col = channels * kernel_h * kernel_w;
for (const auto c : c10::irange(channels_col)) {
int w_offset = c % kernel_w;
int h_offset = (c / kernel_w) % kernel_h;
int c_im = c / kernel_h / kernel_w;
for (const auto h : c10::irange(height_col)) {
for (const auto w : c10::irange(width_col)) {
int h_pad = h * stride_h - pad_t + h_offset * dilation_h;
int w_pad = w * stride_w - pad_l + w_offset * dilation_w;
if (h_pad >= 0 && h_pad < height && w_pad >= 0 && w_pad < width)
data_col[(c * height_col + h) * width_col + w] =
data_im[(c_im * height + h_pad) * width + w_pad];
else
data_col[(c * height_col + h) * width_col + w] = zero_point;
}
}
}
}
template <typename T>
static void Im2ColNdNCHW(
const int N,
const int /* img_size*/,
const int col_size,
const int* img_shape,
const int* col_shape,
const int* kernel_shape,
const int* stride,
const int* dilation,
const int* pad,
const T* X_data,
T* Y_data,
CPUContext* /* context */,
const T& zero_point = 0) {
const int outer_size = col_shape[0];
const int inner_size = col_size / outer_size;
const int kernel_size = std::accumulate(
kernel_shape, kernel_shape + N, 1, std::multiplies<int>());
std::vector<int> d_offset(N, 0);
std::vector<int> d_iter(N, 0);
for (const auto i : c10::irange(outer_size)) {
// Loop over spatial axes in reverse order to compute a per-axis offset.
int offset = i;
for (int d_i = N - 1; d_i >= 0; --d_i) {
d_offset[d_i] = offset % kernel_shape[d_i];
offset /= kernel_shape[d_i];
}
for (const auto j : c10::irange(inner_size)) {
// Loop over spatial axes in forward order to compute the indices in the
// image and column, and whether the index lies in the padding.
const int col_index = i * inner_size + j;
int img_index = i / kernel_size;
bool is_padding = false;
for (const auto d_i : c10::irange(N)) {
const int d_img = d_iter[d_i] * stride[d_i] - pad[d_i] +
d_offset[d_i] * dilation[d_i];
is_padding |= d_img < 0 || d_img >= img_shape[d_i + 1];
img_index = img_index * img_shape[d_i + 1] + d_img;
}
Y_data[col_index] = is_padding ? zero_point : X_data[img_index];
utils::IncreaseIndexInDims(N, col_shape + 1, d_iter.data());
}
}
}
/**
* The layout of the result is N H W G R S C/G.
* Note that groups are pulled out to an outer dimension so that we can use
* GEMMs efficiently.
*/
template <typename T>
static void Im2ColNHWC(
const int channels,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int dilation_h,
const int dilation_w,
const int pad_t,
const int pad_l,
const int pad_b,
const int pad_r,
const int stride_h,
const int stride_w,
const T* data_im,
T* data_col,
CPUContext* /*context*/,
const int groups,
const T& zero_point) {
const int dkernel_h = dilation_h * (kernel_h - 1) + 1;
const int dkernel_w = dilation_w * (kernel_w - 1) + 1;
int height_col = (height + pad_t + pad_b - dkernel_h) / stride_h + 1;
int width_col = (width + pad_l + pad_r - dkernel_w) / stride_w + 1;
#ifdef _OPENMP
#pragma omp parallel for if (!omp_in_parallel())
#endif
for (int h = 0; h < height_col; ++h) {
int h_pad = -pad_t + h * stride_h;
T* data_col_temp =
data_col + h * width_col * kernel_h * kernel_w * channels;
int w_pad = -pad_l;
for (C10_UNUSED const auto w : c10::irange(width_col)) {
int r = 0;
for (int ih = h_pad; ih < h_pad + dkernel_h; ih += dilation_h, ++r) {
int s = 0;
for (int iw = w_pad; iw < w_pad + dkernel_w; iw += dilation_w, ++s) {
if (ih >= 0 && ih < height && iw >= 0 && iw < width) {
for (const auto g : c10::irange(groups)) {
memcpy(
data_col_temp +
((g * kernel_h + r) * kernel_w + s) * (channels / groups),
data_im + (ih * width + iw) * channels +
g * (channels / groups),
sizeof(T) * (channels / groups));
}
} else {
// This should be simply padded with zero.
for (const auto g : c10::irange(groups)) {
for (int i = 0; i < channels / groups; ++i) {
data_col_temp
[(((g * kernel_h + r) * kernel_w) + s) *
(channels / groups) +
i] = zero_point;
}
}
}
} // for each iw
} // for each ih
data_col_temp += kernel_h * kernel_w * channels;
w_pad += stride_w;
} // for each output pixel
} // for each image row
}
/**
* The layout of the result is N T H W G Q R S C/G.
* Note that groups are pulled out to an outer dimension so that we can use
* GEMMs efficiently.
*/
template <typename T>
static void Im2Col3DNHWC(
const int channels,
const int num_frames,
const int height,
const int width,
const int kernel_t,
const int kernel_h,
const int kernel_w,
const int dilation_t,
const int dilation_h,
const int dilation_w,
const int pad_p, // previous frame
const int pad_t, // top
const int pad_l, // left
const int pad_n, // next frame
const int pad_b, // bottom
const int pad_r, // right
const int stride_t,
const int stride_h,
const int stride_w,
const T* data_im,
T* data_col,
CPUContext* /*context*/,
const int groups,
const T& zero_point) {
const int dkernel_t = dilation_t * (kernel_t - 1) + 1;
const int dkernel_h = dilation_h * (kernel_h - 1) + 1;
const int dkernel_w = dilation_w * (kernel_w - 1) + 1;
int frame_col = (num_frames + pad_p + pad_n - dkernel_t) / stride_t + 1;
int height_col = (height + pad_t + pad_b - dkernel_h) / stride_h + 1;
int width_col = (width + pad_l + pad_r - dkernel_w) / stride_w + 1;
#ifdef _OPENMP
#pragma omp parallel for if (!omp_in_parallel())
#endif
for (int t = 0; t < frame_col; ++t) {
int t_pad = -pad_p + t * stride_t;
for (const auto h : c10::irange(height_col)) {
int h_pad = -pad_t + h * stride_h;
T* data_col_temp = data_col +
(t * height_col + h) * width_col * kernel_t * kernel_h * kernel_w *
channels;
for (const auto w : c10::irange(width_col)) {
int w_pad = -pad_l + w * stride_w;
int q = 0;
for (int it = t_pad; it < t_pad + dkernel_t; it += dilation_t, ++q) {
int r = 0;
for (int ih = h_pad; ih < h_pad + dkernel_h; ih += dilation_h, ++r) {
int s = 0;
for (int iw = w_pad; iw < w_pad + dkernel_w;
iw += dilation_w, ++s) {
if (it >= 0 && it < num_frames && ih >= 0 && ih < height &&
iw >= 0 && iw < width) {
for (const auto g : c10::irange(groups)) {
memcpy(
data_col_temp +
(((g * kernel_t + q) * kernel_h + r) * kernel_w + s) *
(channels / groups),
data_im + ((it * height + ih) * width + iw) * channels +
g * (channels / groups),
sizeof(T) * (channels / groups));
}
} else {
// This should be simply padded with zero.
for (const auto g : c10::irange(groups)) {
for (int i = 0; i < channels / groups; ++i) {
data_col_temp
[((((g * kernel_t + q) * kernel_h + r) * kernel_w) +
s) *
(channels / groups) +
i] = zero_point;
}
}
}
} // for each iw
} // for each ih
} // for each it
data_col_temp += kernel_t * kernel_h * kernel_w * channels;
} // for each output pixel
} // for each image row
} // for each frame
}
} // namespace math
} // namespace caffe2
|