File: kl_minimization_example.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (52 lines) | stat: -rw-r--r-- 1,250 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include "caffe2/core/logging.h"
#include "kl_minimization.h"

#include <fstream>
#include <iostream>
#include <sstream>

using namespace std;
using namespace dnnlowp;

int main(int argc, const char* argv[]) {
  if (argc < 3) {
    cerr << "Usage: " << argv[0] << " in_file out_file [preserve_sparsity]"
         << endl;
    return -1;
  }

  ifstream in(argv[1]);
  ofstream out(argv[2]);
  bool preserve_sparsity = argc >= 4 ? atoi(argv[3]) : false;

  string line;
  while (getline(in, line)) {
    istringstream ist(line);

    int op_index, output_index;
    string op_type, tensor_name;
    float min, max;
    int nbins;

    ist >> op_index >> op_type >> output_index >> tensor_name >> min >> max >>
        nbins;

    vector<uint64_t> bins;
    for (int i = 0; i < nbins; ++i) {
      uint64_t cnt;
      ist >> cnt;
      bins.push_back(cnt);
    }
    assert(bins.size() == nbins);

    Histogram hist = Histogram(min, max, bins);
    TensorQuantizationParams qparams =
        KLDivergenceMinimization().ChooseQuantizationParams(
            hist, preserve_sparsity);

    out << op_index << " " << op_type << " " << output_index << " "
        << tensor_name << " " << qparams.Min() << " " << qparams.Max() << endl;
  }

  return 0;
}