1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
#include "lstm_unit_dnnlowp_op.h"
#include "caffe2/core/tensor_int8.h"
#include "caffe2/quantization/server/dnnlowp.h"
#include "caffe2/quantization/server/sigmoid.h"
#include "caffe2/quantization/server/tanh.h"
namespace caffe2 {
using namespace std;
using namespace dnnlowp;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
template <typename T>
LSTMUnitDNNLowPOp<T>::LSTMUnitDNNLowPOp(
const OperatorDef& operator_def,
Workspace* ws)
: LSTMUnitOp<CPUContext>(operator_def, ws),
drop_states_(
this->template GetSingleArgument<bool>("drop_states", false)),
qfactory_(GetQuantizationFactoryOf(this)) {}
template <typename T>
LSTMUnitDNNLowPOp<T>::~LSTMUnitDNNLowPOp() {
if (measure_quantization_error_) {
ReportQuantizationError(this, cell_quantization_error_stats_);
ReportQuantizationError(this, hidden_quantization_error_stats_);
}
}
template <typename T>
OpWrapper<LSTMUnitOp<CPUContext>, T>* LSTMUnitDNNLowPOp<T>::Fp32Op_() {
if (!fp32_op_) {
fp32_op_.reset(
new OpWrapper<LSTMUnitOp<CPUContext>, T>(this, qfactory_.get()));
}
return fp32_op_.get();
}
template <typename T>
const TensorCPU& LSTMUnitDNNLowPOp<T>::InputTensorCPU_(int idx) {
return InputIsType<int8::Int8TensorCPU>(idx)
? this->template Input<int8::Int8TensorCPU>(idx).t
: Input(idx);
}
template <typename T>
TensorCPU* LSTMUnitDNNLowPOp<T>::OutputTensorCPU_(int idx) {
if (dequantize_output_) {
return Output(idx);
} else {
return &Outputs()[idx]->template GetMutable<int8::Int8TensorCPU>()->t;
}
}
template <typename T>
static void LSTMUnit(
int N,
int D,
int t,
const T* H_prev,
const T* C_prev,
const T* X,
const int32_t* seqLengths,
bool drop_states,
T* C,
T* H,
const int32_t forget_bias,
const Sigmoid<T>& sigmoid,
const Tanh<T>& tanh,
const TensorQuantizationParams& X_qparams,
const TensorQuantizationParams& C_in_qparams,
const TensorQuantizationParams& C_out_qparams,
const TensorQuantizationParams& H_in_qparams,
const TensorQuantizationParams& H_out_qparams,
QuantizationFactory* qfactory) {
const TensorQuantizationParams sigmoid_in_qparams =
sigmoid.GetInputQuantizationParams();
const TensorQuantizationParams sigmoid_out_qparams =
sigmoid.GetOutputQuantizationParams();
const TensorQuantizationParams tanh_in_qparams =
tanh.GetInputQuantizationParams();
const TensorQuantizationParams tanh_out_qparams =
tanh.GetOutputQuantizationParams();
RequantizationParams h_in_to_out_params =
qfactory->ChooseRequantizationMultiplier(
H_in_qparams.scale / H_out_qparams.scale, H_out_qparams);
RequantizationParams c_in_to_out_params =
qfactory->ChooseRequantizationMultiplier(
C_in_qparams.scale / C_out_qparams.scale, C_out_qparams);
float sigmoid_scale = sigmoid_out_qparams.scale;
float tanh_scale = tanh_out_qparams.scale;
int32_t sigmoid_zero_point = sigmoid_out_qparams.zero_point;
int32_t tanh_zero_point = tanh_out_qparams.zero_point;
RequantizationParams x_to_sigmoid_params =
qfactory->ChooseRequantizationMultiplier(
X_qparams.scale / sigmoid_in_qparams.scale, sigmoid_in_qparams);
RequantizationParams x_to_tanh_params =
qfactory->ChooseRequantizationMultiplier(
X_qparams.scale / tanh_in_qparams.scale, tanh_in_qparams);
RequantizationParams c_to_tanh_params =
qfactory->ChooseRequantizationMultiplier(
C_in_qparams.scale / tanh_scale, tanh_out_qparams);
RequantizationParams c_out_requantization_params =
qfactory->ChooseRequantizationMultiplier(
sigmoid_scale * tanh_scale / C_out_qparams.scale, C_out_qparams);
RequantizationParams c_tanh_requantization_params =
qfactory->ChooseRequantizationMultiplier(
sigmoid_scale * tanh_scale / tanh_in_qparams.scale, tanh_in_qparams);
RequantizationParams h_requantization_params =
qfactory->ChooseRequantizationMultiplier(
sigmoid_scale * tanh_scale / H_out_qparams.scale, H_out_qparams);
for (int n = 0; n < N; ++n) {
const bool valid = t < seqLengths[n];
for (int d = 0; d < D; ++d) {
if (!valid) {
if (drop_states) {
H[d] = H_out_qparams.zero_point;
C[d] = C_out_qparams.zero_point;
} else {
H[d] = fbgemm::Requantize<T>(
H_prev[d] - H_in_qparams.zero_point, h_in_to_out_params);
C[d] = fbgemm::Requantize<T>(
C_prev[d] - C_in_qparams.zero_point, c_in_to_out_params);
}
} else {
T i_in = fbgemm::Requantize<T>(
X[d] - X_qparams.zero_point, x_to_sigmoid_params);
T f_in = fbgemm::Requantize<T>(
X[1 * D + d] + forget_bias - 2 * X_qparams.zero_point,
x_to_sigmoid_params);
T o_in = fbgemm::Requantize<T>(
X[2 * D + d] - X_qparams.zero_point, x_to_sigmoid_params);
T g_in = fbgemm::Requantize<T>(
X[3 * D + d] - X_qparams.zero_point, x_to_tanh_params);
const T i = sigmoid.Compute(i_in);
const T f = sigmoid.Compute(f_in);
const T o = sigmoid.Compute(o_in);
const T g = tanh.Compute(g_in);
const T c_prev = C_prev[d];
// f_times_c_prev.scale = sigmoid_out.scale * c.scale
int32_t f_times_c_prev = ((int32_t)f - sigmoid_zero_point) *
((int32_t)c_prev - C_in_qparams.zero_point);
// i_times_g.scale = sigmoid_out.scale * tanh_out.scale
// (higher resolution than f_times_c since often tanh.scale < c.scale)
int32_t i_times_g =
((int32_t)i - sigmoid_zero_point) * ((int32_t)g - tanh_zero_point);
// c_temp.scale = sigmoid_out.scale * tanh_out.scale
int32_t f_times_c_prev_rescaled = fbgemm::Requantize<int32_t>(
f_times_c_prev,
0,
c_to_tanh_params.real_multiplier,
32,
true /*signed*/);
int32_t c_temp = f_times_c_prev_rescaled + i_times_g;
// scale back to c.scale
C[d] = fbgemm::Requantize<T>(c_temp, c_out_requantization_params);
T c_tanh_input =
fbgemm::Requantize<T>(c_temp, c_tanh_requantization_params);
T host_tanh_c = tanh.Compute(c_tanh_input);
// o_times_host_tanh_c.scale = sigmoid_out.scale * tanh_out.scale
int32_t o_times_host_tanh_c = ((int32_t)o - sigmoid_zero_point) *
((int32_t)host_tanh_c - tanh_zero_point);
H[d] =
fbgemm::Requantize<T>(o_times_host_tanh_c, h_requantization_params);
}
}
H_prev += D;
C_prev += D;
X += 4 * D;
C += D;
H += D;
}
}
template <typename T>
bool LSTMUnitDNNLowPOp<T>::GetQuantizationParameters_() {
using namespace dnnlowp;
H_in_qparams_ =
GetInputTensorQuantizationParamsOf(this, HIDDEN_T_M_1, qfactory_.get());
C_in_qparams_ =
GetInputTensorQuantizationParamsOf(this, CELL_T_M_1, qfactory_.get());
// G is only used as an input to tanh or sigmoid
G_in_qparams_ = qfactory_->ChooseQuantizationParams(
std::min(
sigmoid_.GetInputQuantizationParams().Min(),
tanh_.GetInputQuantizationParams().Min()),
std::max(
sigmoid_.GetInputQuantizationParams().Max(),
tanh_.GetInputQuantizationParams().Max()));
if (HasStaticQuantization(this, HIDDEN_T)) {
H_out_qparams_ = GetStaticQuantizationParamsOf(this, HIDDEN_T);
}
if (HasStaticQuantization(this, CELL_T)) {
C_out_qparams_ = GetStaticQuantizationParamsOf(this, CELL_T);
}
if (!HasStaticQuantization(this, HIDDEN_T) ||
!HasStaticQuantization(this, CELL_T)) {
Fp32Op_()->DequantizeInput();
if (!Fp32Op_()->Get()->RunOnDevice()) {
return false;
}
if (!HasStaticQuantization(this, HIDDEN_T)) {
H_out_qparams_ =
Fp32Op_()->GetOutputQuantizationParams(qfactory_.get(), HIDDEN_T);
}
if (!HasStaticQuantization(this, CELL_T)) {
C_out_qparams_ =
Fp32Op_()->GetOutputQuantizationParams(qfactory_.get(), CELL_T);
}
}
return true;
}
template <typename T>
bool LSTMUnitDNNLowPOp<T>::RunOnDevice() {
if (!arguments_parsed_) {
ParseDNNLowPOperatorArguments(
this, &dequantize_output_, &measure_quantization_error_);
arguments_parsed_ = true;
}
GetQuantizationParameters_();
// Extract N
const auto N = InputTensorCPU_(CELL_T_M_1).size(1);
// Gates: 1xNxG
const auto G = InputTensorCPU_(GATES).size(2);
const auto D = InputTensorCPU_(CELL_T_M_1).size(2);
CAFFE_ENFORCE_EQ(4 * D, G);
// Quantize H_prev if needed
vector<T> H_prev_temp;
const T* H_prev =
QuantizeInputIfNeeded(this, HIDDEN_T_M_1, H_in_qparams_, H_prev_temp);
// Quantize C_prev if needed
vector<T> C_prev_temp;
const T* C_prev =
QuantizeInputIfNeeded(this, CELL_T_M_1, C_in_qparams_, C_prev_temp);
// Quantize X if needed
vector<T> X_temp;
const T* X = QuantizeInputIfNeeded(this, GATES, G_in_qparams_, X_temp);
// first 3D input to sigmoid, last D input to tanh
const size_t TIMESTEP = SEQ_LENGTHS + 1;
CAFFE_ENFORCE_EQ(Input(SEQ_LENGTHS).size(), N);
const auto* seqLengths = Input(SEQ_LENGTHS).template data<int32_t>();
const auto t = static_cast<OperatorBase*>(this)
->Input<Tensor>(TIMESTEP, CPU)
.template data<int32_t>()[0];
OutputTensorCPU_(CELL_T)->ResizeLike(InputTensorCPU_(CELL_T_M_1));
OutputTensorCPU_(HIDDEN_T)->ResizeLike(InputTensorCPU_(CELL_T_M_1));
vector<uint8_t> Ctemp, Htemp;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
uint8_t *Cdata, *Hdata;
if (dequantize_output_) {
Ctemp.resize(OutputTensorCPU_(CELL_T)->size());
Cdata = Ctemp.data();
Htemp.resize(OutputTensorCPU_(HIDDEN_T)->size());
Hdata = Htemp.data();
} else {
Cdata = OutputTensorCPU_(CELL_T)->template mutable_data<uint8_t>();
Hdata = OutputTensorCPU_(HIDDEN_T)->template mutable_data<uint8_t>();
}
int32_t forget_bias_quantized =
fbgemm::Quantize<int32_t>(forget_bias_, G_in_qparams_);
LSTMUnit(
N,
D,
t,
H_prev,
C_prev,
X,
seqLengths,
drop_states_,
Cdata,
Hdata,
forget_bias_quantized,
sigmoid_,
tanh_,
G_in_qparams_,
C_in_qparams_,
C_out_qparams_,
H_in_qparams_,
H_out_qparams_,
qfactory_.get());
if (dequantize_output_) {
fbgemm::Dequantize<T>(
Cdata,
OutputTensorCPU_(CELL_T)->template mutable_data<float>(),
Ctemp.size(),
C_out_qparams_);
fbgemm::Dequantize<T>(
Hdata,
OutputTensorCPU_(HIDDEN_T)->template mutable_data<float>(),
Htemp.size(),
H_out_qparams_);
if (measure_quantization_error_) {
MeasureQuantizationError(
OutputTensorCPU_(CELL_T)->template mutable_data<float>(),
Fp32Op_()->Get()->Output(CELL_T)->template data<float>(),
OutputTensorCPU_(CELL_T)->size(),
&cell_quantization_error_stats_);
MeasureQuantizationError(
OutputTensorCPU_(HIDDEN_T)->template mutable_data<float>(),
Fp32Op_()->Get()->Output(HIDDEN_T)->template data<float>(),
OutputTensorCPU_(HIDDEN_T)->size(),
&hidden_quantization_error_stats_);
}
} else {
PropagateOutputTensorQuantizationParams(this, HIDDEN_T, H_out_qparams_);
PropagateOutputTensorQuantizationParams(this, CELL_T, C_out_qparams_);
}
return true;
}
REGISTER_CPU_OPERATOR_WITH_ENGINE(
LSTMUnit,
DNNLOWP,
LSTMUnitDNNLowPOp<uint8_t>);
REGISTER_CPU_OPERATOR_WITH_ENGINE(
Int8LSTMUnit,
DNNLOWP,
LSTMUnitDNNLowPOp<uint8_t>);
} // namespace caffe2
|