File: norm_minimization.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (355 lines) | stat: -rw-r--r-- 14,052 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#include "caffe2/core/logging.h"
#include "caffe2/utils/cpuid.h"
#include "l2_minimization.h"

#include <cassert>
#include <cmath>
#include <limits>

#include <immintrin.h>

#include <c10/util/irange.h>

using namespace std;

namespace dnnlowp {

#undef NDEBUG

// Use fp16_min as the small scale cutoff because we don't want to use scales in fp16 subnormal range.
// This is to be consistent with Glow and FakeLowP implementation for NNPI.
constexpr float SMALL_SCALE_THRESHOLD = 6.1e-5f;

static float
GetNorm(float begin, float end, float density, NormMinimization::Kind kind) {
  float norm = 0;

  // assume values are uniformly distributed within each histogram bin
  if (NormMinimization::L2 == kind) {
    // err = density * (integral_{begin, end} x^2)
    //     = density * (end^3 - begin^3) / 3
    norm = (end * end * end - begin * begin * begin) / 3;
    // for begin = d/2 and end = -d/2, this leads to d^3/12
  } else {
    // err = density * (integral_{begin, end} |x|)
    //     = density * (end^2 - begin^2) / 2
    float left_begin = std::min(0.0f, begin);
    float left_end = std::min(0.0f, end);
    assert(left_begin * left_begin >= left_end * left_end);
    norm += (left_begin * left_begin - left_end * left_end) / 2;

    float right_begin = std::max(0.0f, begin);
    float right_end = std::max(0.0f, end);
    assert(right_end * right_end >= right_begin * right_begin);
    norm += (right_end * right_end - right_begin * right_begin) / 2;
  }

  return density * norm;
}

// Filter out outliers in input distributions
// Exploit the input distributions for the quick search
TensorQuantizationParams NormMinimization::NonlinearQuantizationParamsSearch(
    const Histogram& hist,
    bool preserve_sparsity,
    int precision) {
  if (preserve_sparsity) {
    VLOG(2) << "l2_approx with symmetric quantization falls back to L2";
    return ChooseQuantizationParams(hist, preserve_sparsity, precision);
  }
  VLOG(2) << "Using the nonlinear quantile search";

  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  float min, max;
  vector<float> bins_f(dnnlowp::adjust_hist_to_include_zero(hist, &min, &max));
  int nbins = bins_f.size();
  // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
  float bin_width = (max - min) / nbins;
  float scale = (max - min) / float((1 << precision) - 1);
  if (bin_width == 0 || scale < SMALL_SCALE_THRESHOLD) {
    QuantizationFactory* qfactory = QuantizationFactory::GetDefaultInstance();
    return qfactory->ChooseQuantizationParams(
        min, max, precision, preserve_sparsity);
  }
  int dst_nbins = 1 << precision;

  float org_max = max;
  float org_min = min;
  // calculate the CDF
  uint64_t total = 0;
  for (uint64_t x : bins_f) {
    total += x;
  }
  vector<uint64_t> CDF;
  uint64_t sum = 0;
  for (uint64_t x : bins_f) {
    sum += x;
    CDF.push_back(sum);
  }

  double stepsize = 0.00001; // experiment on the granularity
  double alpha = 0.0f, beta = 1.0f; // lowerbound and upperbound
  int start_bin = 0;
  int end_bin = nbins - 1;
  double norm_min = numeric_limits<double>::max();

  while (alpha < beta) {
    // find the next step
    double next_alpha = alpha + stepsize;
    double next_beta = beta - stepsize;

    // find the left and right bins between the quantile bounds
    int i = start_bin, j = end_bin;
    while (i < end_bin && CDF[i] < next_alpha * total)
      i++;
    while (j > start_bin && CDF[j] > next_beta * total)
      j--;

    // decide the next move
    // cout << i << ", " << j << endl;
    int next_start_bin = start_bin, next_end_bin = end_bin;
    if ((i - start_bin) > (end_bin - j)) {
      // move the start_bin
      next_start_bin = i;
      alpha = next_alpha;
    } else {
      // move the end_bin
      next_end_bin = j;
      beta = next_beta;
    }

    if (next_start_bin == start_bin && next_end_bin == end_bin)
      continue;
    // calculate the norm
    double norm = 0;
    double dst_bin_width =
        // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
        bin_width * (next_end_bin - next_start_bin + 1) / dst_nbins;

    // go over each histogram bin and accumulate errors
    for (int src_bin = 0; src_bin < nbins; ++src_bin) {
      // distances from the beginning of first dst_bin to the beginning and
      // end of src_bin
      // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
      double src_bin_begin = (src_bin - next_start_bin) * bin_width;
      double src_bin_end = src_bin_begin + bin_width;

      // which dst_bins the beginning and end of src_bin belong to?
      int dst_bin_of_begin = std::min(
          (1 << precision) - 1.,
          std::max(0., floor(src_bin_begin / dst_bin_width)));
      int dst_bin_of_end = std::min(
          (1 << precision) - 1.,
          std::max(0., floor(src_bin_end / dst_bin_width)));

      double dst_bin_of_begin_center =
          dst_bin_of_begin * dst_bin_width + dst_bin_width / 2;
      double density = bins_f[src_bin] / bin_width;
      if (dst_bin_of_begin == dst_bin_of_end) {
        // if src_bin is entirely within 1 dst_bin
        double delta_begin = src_bin_begin - dst_bin_of_begin_center;
        double delta_end = src_bin_end - dst_bin_of_begin_center;
        // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
        norm += GetNorm(delta_begin, delta_end, density, kind_);
      } else {
        double delta_begin = src_bin_begin - dst_bin_of_begin_center;
        double delta_end = dst_bin_width / 2;
        // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
        norm += GetNorm(delta_begin, delta_end, density, kind_);

        // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
        norm += (dst_bin_of_end - dst_bin_of_begin - 1) *
            // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
            GetNorm(-dst_bin_width / 2, dst_bin_width / 2, density, kind_);

        double dst_bin_of_end_center =
            dst_bin_of_end * dst_bin_width + dst_bin_width / 2;
        delta_begin = -dst_bin_width / 2;
        delta_end = src_bin_end - dst_bin_of_end_center;
        // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
        norm += GetNorm(delta_begin, delta_end, density, kind_);
      }
    }
    if (norm > norm_min)
      break;
    norm_min = norm;
    start_bin = next_start_bin;
    end_bin = next_end_bin;
  }
  VLOG(2) << "best quantization range " << start_bin << "," << end_bin + 1
          << "," << norm_min;

  double selected_sum = 0;
  for (int i = start_bin; i < end_bin + 1; ++i) {
    selected_sum += bins_f[i];
  }
  VLOG(2) << "best quantization range covers "
          << (double)selected_sum / total * 100 << " %%";

  // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
  max = min + bin_width * (end_bin + 1);
  // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
  min = min + bin_width * start_bin;

  VLOG(2) << "Org min " << org_min << " org max " << org_max << " found min "
          << min << " max " << max << " with minimal norm " << norm_min;
  QuantizationFactory* qfactory = QuantizationFactory::GetDefaultInstance();
  return qfactory->ChooseQuantizationParams(
      min, max, precision, preserve_sparsity);
}

TensorQuantizationParams NormMinimization::ChooseQuantizationParams(
    const Histogram& hist,
    bool preserve_sparsity,
    int precision) {
  VLOG(2) << "Using the brute force search";
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  float min, max;
  vector<float> bins_f(dnnlowp::adjust_hist_to_include_zero(hist, &min, &max));
  int nbins = bins_f.size();
  // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
  float bin_width = (max - min) / nbins;

  float scale = (max - min) / float((1 << precision) - 1);
  if (bin_width == 0 || scale < SMALL_SCALE_THRESHOLD) {
    QuantizationFactory* qfactory = QuantizationFactory::GetDefaultInstance();
    return qfactory->ChooseQuantizationParams(
        min, max, precision, preserve_sparsity);
  }
  int dst_nbins = 1 << precision;

  // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
  int zero_bin = round(-min / bin_width);

  vector<pair<int, float>> best_start_bins(nbins + 1);

  // Look at mapping [start_bin, start_bin + nbins_selected) to
  // [0, 1 << precision) for every (start_bin, nbins_selected) combination and
  // pick the one with smallest L2 quantization error
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic)
#endif
  for (int nbins_selected = 1; nbins_selected <= nbins; ++nbins_selected) {
    float norm_min = numeric_limits<float>::max();
    int best_start_bin = 0;

    int start_bin_begin = 0, start_bin_end = nbins - nbins_selected + 1;
    if (preserve_sparsity) {
      // when preserving sparsity we only check the range
      // starting from 0 (when min is 0) or symmetric around 0.
      if (min == 0) {
        start_bin_begin = 0;
        start_bin_end = 1;
      } else {
        start_bin_begin = zero_bin - nbins_selected / 2;
        start_bin_end = start_bin_begin + 1;
      }
    }

    // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
    float dst_bin_width = bin_width * nbins_selected / dst_nbins;

    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    int start_bin;
    for (start_bin = start_bin_begin; start_bin < start_bin_end; ++start_bin) {
      float norm = 0;

      // go over each histogram bin and accumulate errors
      caffe2::CpuId cpuid = caffe2::GetCpuId();
      if (kind_ == NormMinimization::L2 && cpuid.avx2() && cpuid.fma()) {
        norm = internal::L2MinimizationKernelAVX2(
            precision,
            bins_f.data(),
            nbins,
            bin_width,
            dst_bin_width,
            start_bin);
      } else {
        for (int src_bin = 0; src_bin < nbins; ++src_bin) {
          // distances from the beginning of first dst_bin to the beginning and
          // end of src_bin
          // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
          float src_bin_begin = (src_bin - start_bin) * bin_width;
          float src_bin_end = src_bin_begin + bin_width;

          // which dst_bins the beginning and end of src_bin belong to?
          int dst_bin_of_begin = std::min(
              // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
              (1 << precision) - 1.0f,
              std::max(0.0f, floorf(src_bin_begin / dst_bin_width)));
          int dst_bin_of_end = std::min(
              // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
              (1 << precision) - 1.0f,
              std::max(0.0f, floorf(src_bin_end / dst_bin_width)));

          float dst_bin_of_begin_center =
              // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
              dst_bin_of_begin * dst_bin_width + dst_bin_width / 2;
          float density = bins_f[src_bin] / bin_width;
          float delta_begin = src_bin_begin - dst_bin_of_begin_center;
          if (dst_bin_of_begin == dst_bin_of_end) {
            // if src_bin is entirely within 1 dst_bin
            float delta_end = src_bin_end - dst_bin_of_begin_center;
            norm += GetNorm(delta_begin, delta_end, density, kind_);
          } else {
            float delta_end = dst_bin_width / 2;
            norm += GetNorm(delta_begin, delta_end, density, kind_);

            // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
            norm += (dst_bin_of_end - dst_bin_of_begin - 1) *
                GetNorm(-dst_bin_width / 2, dst_bin_width / 2, density, kind_);

            float dst_bin_of_end_center =
                // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
                dst_bin_of_end * dst_bin_width + dst_bin_width / 2;
            delta_begin = -dst_bin_width / 2;
            delta_end = src_bin_end - dst_bin_of_end_center;
            norm += GetNorm(delta_begin, delta_end, density, kind_);
          }
        }
      }

      if (norm < norm_min) {
        norm_min = norm;
        best_start_bin = start_bin;
      }
    } // for each start_bin

    best_start_bins[nbins_selected] = {best_start_bin, norm_min};
  } // for each nbins_selected

  float norm_min = numeric_limits<float>::max();
  int best_nbins_selected = 1, best_start_bin = 0;
  for (int nbins_selected = 1; nbins_selected <= nbins; ++nbins_selected) {
    float norm = best_start_bins[nbins_selected].second;
    if (norm < norm_min) {
      norm_min = norm;
      best_start_bin = best_start_bins[nbins_selected].first;
      best_nbins_selected = nbins_selected;
    }
  }

  float total_sum = 0;
  for (const auto i : c10::irange(bins_f.size())) {
    total_sum += bins_f[i];
  }
  float selected_sum = 0;
  int i_begin = std::max(0, best_start_bin);
  int i_end = std::min(nbins, best_start_bin + best_nbins_selected);
  for (int i = i_begin; i < i_end; ++i) {
    selected_sum += bins_f[i];
  }
  VLOG(2) << "best quantization range covers " << selected_sum / total_sum * 100
          << " %%";

  // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
  max = min + bin_width * (best_start_bin + best_nbins_selected);
  // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
  min = min + bin_width * (best_start_bin);

  QuantizationFactory* qfactory = QuantizationFactory::GetDefaultInstance();
  return qfactory->ChooseQuantizationParams(
      min, max, precision, preserve_sparsity);
} // ChooseQuantizationParams

} // namespace dnnlowp