File: observer_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (43 lines) | stat: -rw-r--r-- 1,011 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43


import numpy as np
from caffe2.python import core, workspace
from caffe2.quantization.server import dnnlowp_pybind11  # type: ignore[attr-defined]


net = core.Net("test_net")

X = np.array([[1, 2], [3, 4]]).astype(np.float32)
W = np.array([[5, 6], [7, 8]]).astype(np.float32)
b = np.array([0, 1]).astype(np.float32)

workspace.FeedBlob("X", X)
workspace.FeedBlob("W", W)
workspace.FeedBlob("b", b)

Y = net.FC(["X", "W", "b"], ["Y"])

dnnlowp_pybind11.ObserveMinMaxOfOutput("test_net.minmax", 1)
workspace.CreateNet(net)
workspace.RunNet(net)
print(workspace.FetchBlob("Y"))

workspace.ResetWorkspace()

workspace.FeedBlob("X", X)
workspace.FeedBlob("W", W)
workspace.FeedBlob("b", b)

dnnlowp_pybind11.ObserveHistogramOfOutput("test_net.hist", 1)
workspace.CreateNet(net)
workspace.RunNet(net)


workspace.FeedBlob("X", X)
workspace.FeedBlob("W", W)
workspace.FeedBlob("b", b)

dnnlowp_pybind11.AddOutputColumnMaxHistogramObserver(
    net._net.name, "test_net._col_max_hist", ["Y"]
)
workspace.RunNet(net)