1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
import collections
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, workspace
from caffe2.quantization.server.dnnlowp_test_utils import check_quantized_results_close
from hypothesis import assume, given
dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])
class DNNLowPOpPoolTest(hu.HypothesisTestCase):
@given(
stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 5),
size=st.integers(1, 20),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
in_quantized=st.booleans(),
**hu.gcs_cpu_only
)
def test_dnnlowp_max_pool(
self,
stride,
pad,
kernel,
size,
input_channels,
batch_size,
order,
in_quantized,
gc,
dc,
):
assume(kernel <= size)
assume(pad < kernel)
C = input_channels
N = batch_size
H = W = size
min_ = -10
max_ = 20
if order == "NCHW":
X = np.round(np.random.rand(N, C, H, W) * (max_ - min_) + min_)
elif order == "NHWC":
X = np.round(np.random.rand(N, H, W, C) * (max_ - min_) + min_)
X = X.astype(np.float32)
Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
outputs = []
op_engine_list = [
("MaxPool", ""),
("MaxPool", "DNNLOWP"),
("Int8MaxPool", "DNNLOWP"),
]
for op_type, engine in op_engine_list:
net = core.Net("test_net")
do_quantize = "DNNLOWP" in engine and in_quantized
if do_quantize:
quantize = core.CreateOperator(
"Quantize", ["X"], ["X_q"], engine=engine, device_option=gc
)
net.Proto().op.extend([quantize])
max_pool = core.CreateOperator(
op_type,
["X_q" if do_quantize else "X"],
["Y_q" if engine == "DNNLOWP" else "Y"],
stride=stride,
kernel=kernel,
pad=pad,
order=order,
engine=engine,
device_option=gc,
)
net.Proto().op.extend([max_pool])
if engine == "DNNLOWP":
dequantize = core.CreateOperator(
"Dequantize", ["Y_q"], ["Y"], engine=engine, device_option=gc
)
net.Proto().op.extend([dequantize])
self.ws.create_blob("X").feed(X, device_option=gc)
self.ws.run(net)
outputs.append(
Output(Y=self.ws.blobs["Y"].fetch(), op_type=op_type, engine=engine)
)
# Y_i = max(X_j) so the only error is in quantization of inputs
check_quantized_results_close(outputs, ref=X)
@given(
ndim=st.integers(2, 3),
stride=st.integers(1, 1),
pad=st.integers(0, 0),
kernel=st.integers(1, 5),
size=st.integers(2, 2),
input_channels=st.integers(1, 1),
batch_size=st.integers(2, 2),
order=st.sampled_from(["NCHW", "NHWC"]),
in_quantized=st.booleans(),
**hu.gcs_cpu_only
)
def test_dnnlowp_average_pool(
self,
ndim,
stride,
pad,
kernel,
size,
input_channels,
batch_size,
order,
in_quantized,
gc,
dc,
):
kernel = 2 # Only kernel size 2 is supported
assume(kernel <= size)
assume(pad < kernel)
C = input_channels
N = batch_size
strides = (stride,) * ndim
pads = (pad,) * (ndim * 2)
kernels = (kernel,) * ndim
sizes = (size,) * ndim
# X has scale 1, so no input quantization error
min_ = -100
max_ = min_ + 255
if order == "NCHW":
X = np.round(np.random.rand(*((N, C) + sizes)) * (max_ - min_) + min_)
X = X.astype(np.float32)
X[(0,) * (ndim + 2)] = min_
X[(0,) * (ndim + 1) + (1,)] = max_
elif order == "NHWC":
X = np.round(np.random.rand(*((N,) + sizes + (C,))) * (max_ - min_) + min_)
X = X.astype(np.float32)
X[(0,) * (ndim + 2)] = min_
X[(0, 1) + (0,) * ndim] = max_
Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
outputs = []
op_engine_list = [
("AveragePool", ""),
("AveragePool", "DNNLOWP"),
("Int8AveragePool", "DNNLOWP"),
]
for op_type, engine in op_engine_list:
net = core.Net("test_net")
do_quantize = "DNNLOWP" in engine and in_quantized
if do_quantize:
quantize = core.CreateOperator(
"Quantize", ["X"], ["X_q"], engine=engine, device_option=gc
)
net.Proto().op.extend([quantize])
max_pool = core.CreateOperator(
op_type,
["X_q" if do_quantize else "X"],
["Y_q" if engine == "DNNLOWP" else "Y"],
strides=strides,
kernels=kernels,
pads=pads,
order=order,
engine=engine,
device_option=gc,
)
net.Proto().op.extend([max_pool])
if engine == "DNNLOWP":
dequantize = core.CreateOperator(
"Dequantize", ["Y_q"], ["Y"], engine=engine, device_option=gc
)
net.Proto().op.extend([dequantize])
self.ws.create_blob("X").feed(X, device_option=gc)
self.ws.run(net)
outputs.append(
Output(Y=self.ws.blobs["Y"].fetch(), op_type=op_type, engine=engine)
)
check_quantized_results_close(outputs)
|