File: spatial_batch_norm_dnnlowp_op.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (59 lines) | stat: -rw-r--r-- 1,340 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#pragma once

#include "caffe2/operators/spatial_batch_norm_op.h"
#include "caffe2/quantization/server/dnnlowp_op.h"

namespace caffe2 {

/**
 * Note this implementation assumes SCALE, BIAS, EST_MEAN, and EST_VAR inputs
 * are still in fp32, so is epsilon argument
 */
template <typename T, bool ReluFused = false>
class SpatialBNDNNLowPOp final : public DNNLowPOp<T, SpatialBNOp<CPUContext>> {
 public:
  USE_OPERATOR_FUNCTIONS(CPUContext);
  USE_DNNLOWP_OPERATOR_BASE_FUNCTIONS(T, SpatialBNOp<CPUContext>);
  SpatialBNDNNLowPOp(const OperatorDef& operator_def, Workspace* ws);

   ~SpatialBNDNNLowPOp() override = default;

  bool RunOnDevice() override;

 private:
  void ComputeFusedParam_(
      const int C,
      const float* scale,
      const float* bias,
      const float* mean,
      const float* var,
      float* alpha,
      float* beta);

  double epsilon_;
  const StorageOrder order_;

  Tensor alpha_;
  Tensor beta_;

  INPUT_TAGS(INPUT, SCALE, BIAS, EST_MEAN, EST_VAR);
  OUTPUT_TAGS(OUTPUT);
};

namespace internal {

template <typename T>
void SpatialBNNHWCAVX2(
    const int N,
    const int C,
    const int HxW,
    const int in_zero_point,
    const int out_zero_point,
    const T* X,
    const float* alpha,
    const float* beta,
    T* Y,
    bool relu_fused);

} // namespace internal
} // namespace caffe2