1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
import copy
import logging
from collections import defaultdict
import numpy as np
from caffe2.python import core, utils
from caffe2.python.fb import hardcode_scale_zp # type: ignore[import]
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
from itertools import tee
a, b = tee(iterable)
next(b, None)
return zip(a, b)
def blob_uses(net, blob):
u = []
for i, op in enumerate(net.op):
if blob in op.input or blob in op.control_input:
u.append(i)
return u
def fuse_first_bn(net, params, removed_tensors, begin_op_index):
net = copy.deepcopy(net)
params = copy.deepcopy(params)
for i, conv in enumerate(net.op[begin_op_index:], begin_op_index):
if conv.type not in ["Conv", "ConvTranspose"]:
continue
uses = blob_uses(net, conv.output[0])
if len(uses) == 0:
continue
j = uses[0]
bn = net.op[j]
if bn.type != "SpatialBN" or (len(uses) > 1 and conv.output[0] != bn.output[0]):
if bn.type == "SpatialBN":
logger.debug("Can't fuse if more than one user {}".format(uses))
# Can't fuse if more than one user unless SpatialBN is inplace
# An example of inplace SpatialBN where we want to allow multiple uses:
# x = Conv(...)
# ... // no interferring use or def of x (will be checked below)
# x = SpatialBN(x, ...)
# ...
# z = Foo(..., x, ...)
# ...
# w = Boo(..., x, ...)
# Here, we still want to fuse Conv and SpatialBN
continue
# There shouldn't be any def of conv.output[0] and any use or def of bn.output[0] between conv and bn
if any(
blob in net.op[k].input or blob in net.op[k].output
for blob in [conv.output[0], bn.output[0]]
for k in range(i + 1, j)
):
logger.debug(
"Can't fuse because of the following interferring uses or defs:"
)
for k in range(i, j + 1):
logger.debug(net.op[k])
continue
# else, can fuse
fused_conv = copy.deepcopy(conv)
fused_conv.output[0] = bn.output[0]
conv_weight = params[conv.input[1]]
if len(conv.input) > 2:
conv_bias = params[conv.input[2]]
else:
conv_bias = np.zeros(len(params[bn.input[2]])).astype(np.float32)
bn_scale = params[bn.input[1]]
bn_bias = params[bn.input[2]]
bn_running_mean = params[bn.input[3]]
bn_running_var = params[bn.input[4]]
# First, BN computation can be phrased as follows:
# (X - running_mean) * (1.0 / sqrt(running_var + eps)) *
# bn_scale + bias
# Thus, we can rewrite bn_scale as:
# X * bn_scale * 1.0 / (sqrt(running_var + eps)) + (bias -
# running_mean * (1.0 / sqrt(running_var + eps)) * bn_scale)
# Thus, can just have the affine transform
# X * A + B
# where
# A = bn_scale * 1.0 / (sqrt(running_var + eps))
# B = (bias - running_mean * (1.0 / sqrt(running_var + eps))
# * bn_scale)
eps = 1.0e-5
for arg in bn.arg:
if arg.name == "epsilon":
eps = arg.f
A = bn_scale * 1.0 / (np.sqrt(bn_running_var + eps))
B = bn_bias - bn_running_mean * A
# This identity should hold if we have correctly fused
# np.testing.assert_array_equal(
# params[conv.output[0]] * A + B,
# params[bn.output[0]])
# Now, we have that the computation made is the following:
# ((X `conv` W) + b) * A + B
# Then, we can simply fuse this as follows:
# (X `conv` (W * A)) + b * A + B
# which is simply
# (X `conv` Q) + C
# where
# Q = W * A
# C = b * A + B
# For ConvTranspose, from the view of convolutions as a
# Toepeliz multiplication, we have W_ = W^T, so the weights
# are laid out as (R, S, K, K) (vs (S, R, K, K) for a Conv),
# so the weights broadcast slightly differently. Remember, our
# BN scale 'B' is of size (S,)
A_ = (
A.reshape((-1,) + tuple([1] * (conv_weight.ndim - 1)))
if conv.type == "Conv"
else A.reshape((1, -1) + tuple([1] * (conv_weight.ndim - 2)))
)
C = conv_bias * A + B
Q = conv_weight * A_
assert params[conv.input[1]].shape == Q.shape
if len(conv.input) > 2:
assert params[conv.input[2]].shape == C.shape
else:
assert bn_bias.shape == C.shape
params[conv.input[1]] = Q
if len(conv.input) > 2:
params[conv.input[2]] = C
else:
params[bn.input[2]] = C
fused_conv.input.append(bn.input[2])
new_ops = net.op[:i] + [fused_conv] + net.op[i + 1 : j] + net.op[j + 1 :]
del net.op[:]
removed_tensors.append(bn.input[1])
if len(conv.input) > 2:
removed_tensors.append(bn.input[2])
removed_tensors.append(bn.input[3])
removed_tensors.append(bn.input[4])
del params[bn.input[1]]
if len(conv.input) > 2:
del params[bn.input[2]]
del params[bn.input[3]]
del params[bn.input[4]]
net.op.extend(new_ops)
return net, params, removed_tensors, i + 1
return net, params, removed_tensors, None
def fuse_bn(net, params, ignore_failure):
# Run until we hit a fixed point
removed_tensors = []
begin_op_index = 0
while True:
(next_net, next_params, removed_tensors, begin_op_index) = fuse_first_bn(
net, params, removed_tensors, begin_op_index
)
if begin_op_index is None:
if any(op.type == "SpatialBN" for op in next_net.op) and not ignore_failure:
raise Exception(
"Model contains SpatialBN op after fusion: %s", next_net
)
return (next_net, next_params, removed_tensors)
net, params, removed_tensors = (next_net, next_params, removed_tensors)
def fuse_first_scale(net, params, removed_tensors):
net = copy.deepcopy(net)
params = copy.deepcopy(params)
for ((i, current), (j, next_)) in pairwise(enumerate(net.op)):
if next_.input[0] != current.output[0]:
continue
if (
current.type != "SpatialBN"
or next_.type != "Mul"
or len(net.op) <= j + 1
or net.op[j + 1].type != "Add"
):
continue
# else, can fuse
bn = current
mul = next_
add = net.op[j + 1]
fused_bn = copy.deepcopy(bn)
fused_bn.output[0] = add.output[0]
bn_scale = params[bn.input[1]]
mul_scale = params[mul.input[1]]
bn_bias = params[bn.input[2]]
add_bias = params[add.input[1]]
params[bn.input[1]] = bn_scale * mul_scale
params[bn.input[2]] = mul_scale * bn_bias + add_bias
new_ops = net.op[:i] + [fused_bn] + net.op[j + 2 :]
del net.op[:]
removed_tensors.append(mul.input[1])
removed_tensors.append(add.input[1])
del params[mul.input[1]]
del params[add.input[1]]
net.op.extend(new_ops)
break
return net, params, removed_tensors
def fuse_scale(net, params, ignore_failure):
# Run until we hit a fixed point
removed_tensors = []
while True:
(next_net, next_params, removed_tensors) = fuse_first_scale(
net, params, removed_tensors
)
if len(next_net.op) == len(net.op):
return (next_net, next_params, removed_tensors)
net, params, removed_tensors = (next_net, next_params, removed_tensors)
def fuse_first_relu(net, begin_op_index, ignore_op_with_output=None):
net = copy.deepcopy(net)
for i, conv in enumerate(net.op[begin_op_index:], begin_op_index):
if conv.type not in ["Conv", "ConvTranspose", "Sum", "SpatialBN"]:
continue
uses = blob_uses(net, conv.output[0])
if (
len(uses) == 0
or ignore_op_with_output
and conv.output[0] in ignore_op_with_output
):
continue
j = uses[0]
relu = net.op[j]
if relu.type != "Relu" or len(uses) > 1 and conv.output[0] != relu.output[0]:
# Can't fuse if more than one user unless Relu is inplace
if relu.type == "Relu":
logger.debug("Can't fuse if more than one user {}".format(uses))
continue
# There shouldn't be any def of conv.output[0] and any use or def of relu.output[0] between conv and relu
if any(
blob in net.op[k].input or blob in net.op[k].output
for blob in [conv.output[0], relu.output[0]]
for k in range(i + 1, j)
):
logger.debug(
"Can't fuse because of the following interferring uses or defs:"
)
for k in range(i, j + 1):
logger.debug(net.op[k])
continue
# else, can fuse
fused_conv = copy.deepcopy(conv)
fused_conv.type = conv.type + "Relu"
fused_conv.output[0] = relu.output[0]
new_ops = net.op[:i] + [fused_conv] + net.op[i + 1 : j] + net.op[j + 1 :]
del net.op[:]
net.op.extend(new_ops)
return net, i + 1
return net, None
def fuse_relu(net, ignore_failure, ignore_op_with_output=None):
# Run until we hit a fixed point
begin_op_index = 0
while True:
next_net, begin_op_index = fuse_first_relu(
net, begin_op_index, ignore_op_with_output
)
if begin_op_index is None:
if any(op.type == "Relu" for op in next_net.op) and not ignore_failure:
raise Exception("Model contains Relu op after fusion: %s", next_net)
return next_net
net = next_net
def last_producer(ops, blob):
for (i, op) in reversed(list(enumerate(ops))):
if op.output[0] == blob:
return i
raise ValueError("Failed to find last producer of blob, %s", blob)
def swap_first_concat_relu(net, ignore_op_with_output=None):
net = copy.deepcopy(net)
for ((i, current), (j, next_)) in pairwise(enumerate(net.op)):
if next_.input[0] != current.output[0]:
continue
if current.type != "Concat" or next_.type != "Relu":
continue
if ignore_op_with_output and current.output[0] in ignore_op_with_output:
continue
# else, can swap
concat = copy.deepcopy(current)
relu = copy.deepcopy(next_)
pre_ops = copy.deepcopy(net.op[:i])
post_ops = copy.deepcopy(net.op[j + 1 :])
# Delete the Relu after Concat
concat.output[0] = relu.output[0]
# Insert Relu after each op that produces inputs to Concat
for blob in concat.input:
k = last_producer(pre_ops, blob)
producer = pre_ops[k]
assert producer.output[0] == blob
producer.output[0] = blob + "_pre_relu"
new_relu = copy.deepcopy(relu)
new_relu.input[0] = producer.output[0]
new_relu.output[0] = blob
pre_ops = pre_ops[: k + 1] + [new_relu] + pre_ops[k + 1 :]
new_ops = pre_ops + [concat] + post_ops
del net.op[:]
net.op.extend(new_ops)
break
return net
def swap_concat_relu(net, ignore_op_with_output=None):
# Run until we hit a fixed point
while True:
next_net = swap_first_concat_relu(net, ignore_op_with_output)
if len(next_net.op) == len(net.op):
return next_net
net = next_net
def add_version_to_conv_bias(net, init_net):
"""
In architectures such as FPN (https://arxiv.org/abs/1612.03144), few Conv
ops share the same weight and bias and are run at different scales of
the input. Since 'bias_scale = input_scale * weight_scale', sharing the
same bias blob among multiple Conv ops means that we need different bias
scale for each of the ops. To achieve this, we just duplicate those bias
blobs that are used by multiple Conv ops before performing int8 rewrite.
"""
bias_count = defaultdict(int)
for op in net._net.op:
if "Conv" in op.type and len(op.input) >= 3:
bias_count[op.input[2]] += 1
bias_fill_op = {}
for op in init_net._net.op:
if bias_count[op.output[0]] > 1:
bias_fill_op[op.output[0]] = op
bias_version = defaultdict(int)
for op in net._net.op:
if "Conv" in op.type and len(op.input) >= 3:
bias = op.input[2]
if bias_count[bias] <= 1:
continue
version = bias_version[bias]
bias_version[bias] += 1
if version == 0:
continue
new_bias = bias + "_v" + str(version)
fill_op = copy.deepcopy(bias_fill_op[bias])
fill_op.output[0] = new_bias
init_net._net.op.extend([fill_op])
op.input[2] = new_bias
net._net.external_input.append(new_bias)
def add_quantization_param_args_(op, q_param):
op.arg.extend(
[
utils.MakeArgument("Y_scale", q_param.scale),
utils.MakeArgument("Y_zero_point", q_param.zero_point),
]
)
def choose_quantization_params(tensor_min, tensor_max, preserve_sparsity=False):
if tensor_min < 0 and tensor_max > 0 and preserve_sparsity:
symmetric_qmin = -(255 // 2 + 1)
symmetric_qmax = 255 // 2
max_scale = max(
abs(tensor_min / symmetric_qmin), abs(tensor_max / symmetric_qmax)
)
tensor_min = max_scale * symmetric_qmin
tensor_max = max_scale * symmetric_qmax
q_param = hardcode_scale_zp.choose_quantization_params(tensor_min, tensor_max)
if tensor_min < 0 and tensor_max > 0 and preserve_sparsity:
q_param = hardcode_scale_zp.QuantizationParam(q_param.scale, 128)
return q_param
def add_quantization_param_args(op, tensor, preserve_sparsity=False):
tensor_min = 0 if tensor.size == 0 else tensor.min()
tensor_max = 0 if tensor.size == 0 else tensor.max()
q_param = choose_quantization_params(tensor_min, tensor_max, preserve_sparsity)
add_quantization_param_args_(op, q_param)
return q_param
def create_int8_given_tensor_fill(tensor, out_blob_name, preserve_sparsity=False):
"""
Create Int8GivenTensorFill op that quantizes the given tensor and outputs
an Int8Tensor with out_blob_name.
"""
op = core.CreateOperator("Int8GivenTensorFill", [], out_blob_name)
q_param = add_quantization_param_args(op, tensor, preserve_sparsity)
quantized_tensor = (
np.around(tensor / q_param.scale).astype(np.int32) + q_param.zero_point
)
quantized_tensor = np.maximum(0, np.minimum(quantized_tensor, 255))
op.arg.extend(
[
utils.MakeArgument("values", quantized_tensor.astype(np.uint8).tobytes()),
utils.MakeArgument("shape", quantized_tensor.shape),
]
)
return op, q_param
def create_int8_bias_tensor_fill(tensor, out_blob_name, x_q_param, w_q_param):
"""
Similar to create_int8_given_tensor_fill, but for bias blobs to be stored
as int32.
"""
scale = x_q_param.scale * w_q_param.scale
quantized_tensor = np.around(tensor / scale).astype(np.int32)
quantized_tensor.reshape(-1)
op = core.CreateOperator("Int8GivenIntTensorFill", [], out_blob_name)
op.arg.extend(
[
utils.MakeArgument("values", quantized_tensor),
utils.MakeArgument("shape", quantized_tensor.shape),
]
)
q_param = hardcode_scale_zp.QuantizationParam(scale, 0)
add_quantization_param_args_(op, q_param)
return op
|