1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
#pragma once
#include <memory>
#include "blobs_queue.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
#include <c10/util/irange.h>
namespace caffe2 {
template <typename Context>
class CreateBlobsQueueOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
CreateBlobsQueueOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
ws_(ws),
name(operator_def.output().Get(0)) {}
bool RunOnDevice() override {
const auto capacity = GetSingleArgument("capacity", 1);
const auto numBlobs = GetSingleArgument("num_blobs", 1);
const auto enforceUniqueName =
GetSingleArgument("enforce_unique_name", false);
const auto fieldNames =
OperatorBase::template GetRepeatedArgument<std::string>("field_names");
CAFFE_ENFORCE_EQ(this->OutputSize(), 1);
auto queuePtr = Operator<Context>::Outputs()[0]
->template GetMutable<std::shared_ptr<BlobsQueue>>();
CAFFE_ENFORCE(queuePtr);
*queuePtr = std::make_shared<BlobsQueue>(
ws_, name, capacity, numBlobs, enforceUniqueName, fieldNames);
return true;
}
private:
Workspace* ws_{nullptr};
const std::string name;
};
template <typename Context>
class EnqueueBlobsOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
using Operator<Context>::Operator;
bool RunOnDevice() override {
CAFFE_ENFORCE(InputSize() > 1);
auto queue = Operator<Context>::Inputs()[0]
->template Get<std::shared_ptr<BlobsQueue>>();
CAFFE_ENFORCE(
queue && static_cast<size_t>(OutputSize()) == queue->getNumBlobs());
return queue->blockingWrite(this->Outputs());
}
private:
};
template <typename Context>
class DequeueBlobsOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
DequeueBlobsOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws) {
timeout_secs_ = OperatorBase::GetSingleArgument<float>("timeout_secs", 0);
}
bool RunOnDevice() override {
CAFFE_ENFORCE(InputSize() == 1);
auto queue =
OperatorBase::Inputs()[0]->template Get<std::shared_ptr<BlobsQueue>>();
CAFFE_ENFORCE(
queue && static_cast<size_t>(OutputSize()) == queue->getNumBlobs());
return queue->blockingRead(this->Outputs(), timeout_secs_);
}
private:
float timeout_secs_;
};
template <typename Context>
class CloseBlobsQueueOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
using Operator<Context>::Operator;
bool RunOnDevice() override {
CAFFE_ENFORCE_EQ(InputSize(), 1);
auto queue =
OperatorBase::Inputs()[0]->template Get<std::shared_ptr<BlobsQueue>>();
CAFFE_ENFORCE(queue);
queue->close();
return true;
}
private:
};
template <typename Context>
class SafeEnqueueBlobsOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
using Operator<Context>::Operator;
bool RunOnDevice() override {
auto queue = Operator<Context>::Inputs()[0]
->template Get<std::shared_ptr<BlobsQueue>>();
CAFFE_ENFORCE(queue);
auto size = queue->getNumBlobs();
CAFFE_ENFORCE(
static_cast<size_t>(OutputSize()) == size + 1,
"Expected " + c10::to_string(size + 1) + ", " +
" got: " + c10::to_string(size));
bool status = queue->blockingWrite(this->Outputs());
Output(size)->Resize();
math::Set<bool, Context>(
1, !status, Output(size)->template mutable_data<bool>(), &context_);
return true;
}
void Cancel() override {
auto queue = Operator<Context>::Inputs()[0]
->template Get<std::shared_ptr<BlobsQueue>>();
queue->close();
}
};
template <typename Context>
class SafeDequeueBlobsOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
using Operator<Context>::Operator;
SafeDequeueBlobsOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
numRecords_(OperatorBase::GetSingleArgument<int>("num_records", 1)) {
CAFFE_ENFORCE_GT(numRecords_, 0);
}
bool dequeueMany(std::shared_ptr<BlobsQueue>& queue) {
auto size = queue->getNumBlobs();
if (blobs_.size() != size) {
blobs_.resize(size);
blobPtrs_.resize(size);
for (auto col : c10::irange(size)) {
blobPtrs_.at(col) = &blobs_.at(col);
}
}
const int kTensorGrowthPct = 40;
for (const auto i : c10::irange(numRecords_)) {
if (!queue->blockingRead(blobPtrs_)) {
// if we read at least one record, status is still true
return i > 0;
}
for (auto col : c10::irange(size)) {
auto* out = this->Output(col);
const auto& in = blobPtrs_.at(col)->template Get<Tensor>();
if (i == 0) {
out->CopyFrom(in);
} else {
auto oldSize = out->numel();
CAFFE_ENFORCE(
in.dim() > 0,
"Empty tensor to dequeue at column ",
col,
" within ",
size,
" total columns");
out->Extend(in.sizes()[0], kTensorGrowthPct);
auto* dst =
(char*)out->raw_mutable_data() + oldSize * in.dtype().itemsize();
context_.template CopyItems<Context, Context>(
in.meta(), in.numel(), in.raw_data(), dst);
}
}
}
return true;
}
bool dequeueOne(std::shared_ptr<BlobsQueue>& queue) {
return queue->blockingRead(this->Outputs());
}
bool RunOnDevice() override {
CAFFE_ENFORCE(InputSize() == 1);
auto queue = Operator<Context>::Inputs()[0]
->template Get<std::shared_ptr<BlobsQueue>>();
CAFFE_ENFORCE(queue);
auto size = queue->getNumBlobs();
CAFFE_ENFORCE_EQ(OutputSize(), size + 1);
bool status = numRecords_ > 1 ? dequeueMany(queue) : dequeueOne(queue);
Output(size)->Resize();
math::Set<bool, Context>(
1, !status, Output(size)->template mutable_data<bool>(), &context_);
return true;
}
void Cancel() override {
auto queue = Operator<Context>::Inputs()[0]
->template Get<std::shared_ptr<BlobsQueue>>();
queue->close();
}
private:
int numRecords_;
std::vector<Blob> blobs_;
std::vector<Blob*> blobPtrs_;
};
template <typename Context>
class WeightedSampleDequeueBlobsOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
WeightedSampleDequeueBlobsOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
table_idx_blob_(
OperatorBase::GetSingleArgument<int>("table_idx_blob", -1)) {
CAFFE_ENFORCE_LT(table_idx_blob_, OutputSize() - 1);
vector<float> weights = OperatorBase::GetRepeatedArgument<float>("weights");
if (weights.empty()) {
weights.resize(InputSize(), 1.0f);
}
CAFFE_ENFORCE_EQ(InputSize(), weights.size());
float sum = accumulate(weights.begin(), weights.end(), 0.0f);
CAFFE_ENFORCE(sum > 0.0f, "Sum of weights must be positive");
cumProbs_.resize(weights.size());
for (auto i : c10::irange(weights.size())) {
cumProbs_[i] = weights[i] / sum;
CAFFE_ENFORCE_GE(
cumProbs_[i], 0.0f, "Each probability must be non-negative");
}
std::partial_sum(cumProbs_.begin(), cumProbs_.end(), cumProbs_.begin());
// Put last value to be 1.0001 to avoid numerical issues.
cumProbs_.back() = 1.0001f;
LOG(INFO) << "Dequeue weights: " << weights;
LOG(INFO) << "cumProbs: " << cumProbs_;
}
bool RunOnDevice() override {
float r;
math::RandUniform<float, Context>(1, 0.0f, 1.0f, &r, &context_);
auto lb = lower_bound(cumProbs_.begin(), cumProbs_.end(), r);
CAFFE_ENFORCE(lb != cumProbs_.end(), "Cannot find ", r, " in cumProbs_.");
const int32_t idx = lb - cumProbs_.begin();
auto queue = Operator<Context>::Inputs()[idx]
->template Get<std::shared_ptr<BlobsQueue>>();
CAFFE_ENFORCE(queue);
auto size = queue->getNumBlobs();
CAFFE_ENFORCE_EQ(OutputSize(), size + 1);
bool status = queue->blockingRead(this->Outputs());
if (table_idx_blob_ >= 0) {
auto* table_idx_blob_out =
Output(table_idx_blob_, {1}, at::dtype<int32_t>());
int32_t* data = table_idx_blob_out->template mutable_data<int32_t>();
data[0] = idx;
}
Output(size)->Resize();
math::Set<bool, Context>(
1, !status, Output(size)->template mutable_data<bool>(), &context_);
return true;
}
private:
vector<float> cumProbs_;
int table_idx_blob_;
};
} // namespace caffe2
|